Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovncvr2 Structured version   Visualization version   GIF version

Theorem ovncvr2 41146
Description: 𝐵 and 𝑇 are the left and right side of a cover of 𝐴. This cover is made of n-dimensional half open intervals, and approximates the n-dimensional Lebesgue outer volume of 𝐴. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
ovncvr2.x (𝜑𝑋 ∈ Fin)
ovncvr2.a (𝜑𝐴 ⊆ (ℝ ↑𝑚 𝑋))
ovncvr2.e (𝜑𝐸 ∈ ℝ+)
ovncvr2.c 𝐶 = (𝑎 ∈ 𝒫 (ℝ ↑𝑚 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})
ovncvr2.l 𝐿 = ( ∈ ((ℝ × ℝ) ↑𝑚 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))
ovncvr2.d 𝐷 = (𝑎 ∈ 𝒫 (ℝ ↑𝑚 𝑋) ↦ (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)}))
ovncvr2.i (𝜑𝐼 ∈ ((𝐷𝐴)‘𝐸))
ovncvr2.b 𝐵 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))))
ovncvr2.t 𝑇 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))))
Assertion
Ref Expression
ovncvr2 (𝜑 → (((𝐵:ℕ⟶(ℝ ↑𝑚 𝑋) ∧ 𝑇:ℕ⟶(ℝ ↑𝑚 𝑋)) ∧ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)))
Distinct variable groups:   𝐴,𝑎,𝑖,𝑟   𝐴,𝑙,𝑎   𝐵,   𝐶,𝑎,𝑖,𝑟   𝑖,𝐸,𝑟   ,𝐼,𝑗,𝑘   𝑖,𝐼,𝑗   𝐼,𝑙,𝑗,𝑘   𝐿,𝑎,𝑖,𝑟   𝑇,   𝑋,𝑎,𝑖,𝑗,𝑟   ,𝑋,𝑘   𝑋,𝑙   𝑘,𝑎,𝜑,𝑗   𝜑,   𝜑,𝑟
Allowed substitution hints:   𝜑(𝑖,𝑙)   𝐴(,𝑗,𝑘)   𝐵(𝑖,𝑗,𝑘,𝑟,𝑎,𝑙)   𝐶(,𝑗,𝑘,𝑙)   𝐷(,𝑖,𝑗,𝑘,𝑟,𝑎,𝑙)   𝑇(𝑖,𝑗,𝑘,𝑟,𝑎,𝑙)   𝐸(,𝑗,𝑘,𝑎,𝑙)   𝐼(𝑟,𝑎)   𝐿(,𝑗,𝑘,𝑙)

Proof of Theorem ovncvr2
StepHypRef Expression
1 ovncvr2.c . . . . . . . . . . . . . . . . 17 𝐶 = (𝑎 ∈ 𝒫 (ℝ ↑𝑚 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})
21a1i 11 . . . . . . . . . . . . . . . 16 (𝜑𝐶 = (𝑎 ∈ 𝒫 (ℝ ↑𝑚 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)}))
3 sseq1 3659 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝐴 → (𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘) ↔ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)))
43rabbidv 3220 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝐴 → {𝑙 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)} = {𝑙 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∣ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})
54adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑎 = 𝐴) → {𝑙 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)} = {𝑙 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∣ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})
6 ovncvr2.a . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ⊆ (ℝ ↑𝑚 𝑋))
7 ovexd 6720 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (ℝ ↑𝑚 𝑋) ∈ V)
87, 6ssexd 4838 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ∈ V)
9 elpwg 4199 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ V → (𝐴 ∈ 𝒫 (ℝ ↑𝑚 𝑋) ↔ 𝐴 ⊆ (ℝ ↑𝑚 𝑋)))
108, 9syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 ∈ 𝒫 (ℝ ↑𝑚 𝑋) ↔ 𝐴 ⊆ (ℝ ↑𝑚 𝑋)))
116, 10mpbird 247 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ 𝒫 (ℝ ↑𝑚 𝑋))
12 ovex 6718 . . . . . . . . . . . . . . . . . 18 (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∈ V
1312rabex 4845 . . . . . . . . . . . . . . . . 17 {𝑙 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∣ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)} ∈ V
1413a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → {𝑙 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∣ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)} ∈ V)
152, 5, 11, 14fvmptd 6327 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶𝐴) = {𝑙 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∣ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})
16 ssrab2 3720 . . . . . . . . . . . . . . . 16 {𝑙 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∣ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)} ⊆ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)
1716a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → {𝑙 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∣ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)} ⊆ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ))
1815, 17eqsstrd 3672 . . . . . . . . . . . . . 14 (𝜑 → (𝐶𝐴) ⊆ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ))
19 ovncvr2.i . . . . . . . . . . . . . . . . 17 (𝜑𝐼 ∈ ((𝐷𝐴)‘𝐸))
20 ovncvr2.d . . . . . . . . . . . . . . . . . . . 20 𝐷 = (𝑎 ∈ 𝒫 (ℝ ↑𝑚 𝑋) ↦ (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)}))
2120a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐷 = (𝑎 ∈ 𝒫 (ℝ ↑𝑚 𝑋) ↦ (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)})))
22 fveq2 6229 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎 = 𝐴 → (𝐶𝑎) = (𝐶𝐴))
2322eleq2d 2716 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = 𝐴 → (𝑖 ∈ (𝐶𝑎) ↔ 𝑖 ∈ (𝐶𝐴)))
24 fveq2 6229 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 = 𝐴 → ((voln*‘𝑋)‘𝑎) = ((voln*‘𝑋)‘𝐴))
2524oveq1d 6705 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎 = 𝐴 → (((voln*‘𝑋)‘𝑎) +𝑒 𝑟) = (((voln*‘𝑋)‘𝐴) +𝑒 𝑟))
2625breq2d 4697 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = 𝐴 → ((Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟) ↔ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑟)))
2723, 26anbi12d 747 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 𝐴 → ((𝑖 ∈ (𝐶𝑎) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)) ↔ (𝑖 ∈ (𝐶𝐴) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑟))))
2827rabbidva2 3217 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = 𝐴 → {𝑖 ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)} = {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑟)})
2928mpteq2dv 4778 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝐴 → (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)}) = (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑟)}))
3029adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑎 = 𝐴) → (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)}) = (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑟)}))
31 rpex 39875 . . . . . . . . . . . . . . . . . . . . 21 + ∈ V
3231mptex 6527 . . . . . . . . . . . . . . . . . . . 20 (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑟)}) ∈ V
3332a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑟)}) ∈ V)
3421, 30, 11, 33fvmptd 6327 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐷𝐴) = (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑟)}))
35 oveq2 6698 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 = 𝐸 → (((voln*‘𝑋)‘𝐴) +𝑒 𝑟) = (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))
3635breq2d 4697 . . . . . . . . . . . . . . . . . . . 20 (𝑟 = 𝐸 → ((Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑟) ↔ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)))
3736rabbidv 3220 . . . . . . . . . . . . . . . . . . 19 (𝑟 = 𝐸 → {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑟)} = {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)})
3837adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑟 = 𝐸) → {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑟)} = {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)})
39 ovncvr2.e . . . . . . . . . . . . . . . . . 18 (𝜑𝐸 ∈ ℝ+)
40 fvex 6239 . . . . . . . . . . . . . . . . . . . 20 (𝐶𝐴) ∈ V
4140rabex 4845 . . . . . . . . . . . . . . . . . . 19 {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)} ∈ V
4241a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)} ∈ V)
4334, 38, 39, 42fvmptd 6327 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐷𝐴)‘𝐸) = {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)})
4419, 43eleqtrd 2732 . . . . . . . . . . . . . . . 16 (𝜑𝐼 ∈ {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)})
45 fveq1 6228 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝐼 → (𝑖𝑗) = (𝐼𝑗))
4645fveq2d 6233 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝐼 → (𝐿‘(𝑖𝑗)) = (𝐿‘(𝐼𝑗)))
4746mpteq2dv 4778 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 𝐼 → (𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗))) = (𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗))))
4847fveq2d 6233 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝐼 → (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))))
4948breq1d 4695 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝐼 → ((Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸) ↔ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)))
5049elrab 3396 . . . . . . . . . . . . . . . 16 (𝐼 ∈ {𝑖 ∈ (𝐶𝐴) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)} ↔ (𝐼 ∈ (𝐶𝐴) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)))
5144, 50sylib 208 . . . . . . . . . . . . . . 15 (𝜑 → (𝐼 ∈ (𝐶𝐴) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)))
5251simpld 474 . . . . . . . . . . . . . 14 (𝜑𝐼 ∈ (𝐶𝐴))
5318, 52sseldd 3637 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ))
54 elmapi 7921 . . . . . . . . . . . . 13 (𝐼 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) → 𝐼:ℕ⟶((ℝ × ℝ) ↑𝑚 𝑋))
5553, 54syl 17 . . . . . . . . . . . 12 (𝜑𝐼:ℕ⟶((ℝ × ℝ) ↑𝑚 𝑋))
5655adantr 480 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → 𝐼:ℕ⟶((ℝ × ℝ) ↑𝑚 𝑋))
57 simpr 476 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
5856, 57ffvelrnd 6400 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (𝐼𝑗) ∈ ((ℝ × ℝ) ↑𝑚 𝑋))
59 elmapi 7921 . . . . . . . . . 10 ((𝐼𝑗) ∈ ((ℝ × ℝ) ↑𝑚 𝑋) → (𝐼𝑗):𝑋⟶(ℝ × ℝ))
6058, 59syl 17 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (𝐼𝑗):𝑋⟶(ℝ × ℝ))
6160ffvelrnda 6399 . . . . . . . 8 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐼𝑗)‘𝑘) ∈ (ℝ × ℝ))
62 xp1st 7242 . . . . . . . 8 (((𝐼𝑗)‘𝑘) ∈ (ℝ × ℝ) → (1st ‘((𝐼𝑗)‘𝑘)) ∈ ℝ)
6361, 62syl 17 . . . . . . 7 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (1st ‘((𝐼𝑗)‘𝑘)) ∈ ℝ)
64 eqid 2651 . . . . . . 7 (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))) = (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘)))
6563, 64fmptd 6425 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))):𝑋⟶ℝ)
66 reex 10065 . . . . . . . . 9 ℝ ∈ V
6766a1i 11 . . . . . . . 8 (𝜑 → ℝ ∈ V)
68 ovncvr2.x . . . . . . . 8 (𝜑𝑋 ∈ Fin)
69 elmapg 7912 . . . . . . . 8 ((ℝ ∈ V ∧ 𝑋 ∈ Fin) → ((𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))) ∈ (ℝ ↑𝑚 𝑋) ↔ (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))):𝑋⟶ℝ))
7067, 68, 69syl2anc 694 . . . . . . 7 (𝜑 → ((𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))) ∈ (ℝ ↑𝑚 𝑋) ↔ (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))):𝑋⟶ℝ))
7170adantr 480 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → ((𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))) ∈ (ℝ ↑𝑚 𝑋) ↔ (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))):𝑋⟶ℝ))
7265, 71mpbird 247 . . . . 5 ((𝜑𝑗 ∈ ℕ) → (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))) ∈ (ℝ ↑𝑚 𝑋))
73 eqid 2651 . . . . 5 (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘)))) = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))))
7472, 73fmptd 6425 . . . 4 (𝜑 → (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘)))):ℕ⟶(ℝ ↑𝑚 𝑋))
75 ovncvr2.b . . . . . 6 𝐵 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))))
7675a1i 11 . . . . 5 (𝜑𝐵 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘)))))
7776feq1d 6068 . . . 4 (𝜑 → (𝐵:ℕ⟶(ℝ ↑𝑚 𝑋) ↔ (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘)))):ℕ⟶(ℝ ↑𝑚 𝑋)))
7874, 77mpbird 247 . . 3 (𝜑𝐵:ℕ⟶(ℝ ↑𝑚 𝑋))
79 xp2nd 7243 . . . . . . . 8 (((𝐼𝑗)‘𝑘) ∈ (ℝ × ℝ) → (2nd ‘((𝐼𝑗)‘𝑘)) ∈ ℝ)
8061, 79syl 17 . . . . . . 7 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (2nd ‘((𝐼𝑗)‘𝑘)) ∈ ℝ)
81 eqid 2651 . . . . . . 7 (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))) = (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘)))
8280, 81fmptd 6425 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))):𝑋⟶ℝ)
83 elmapg 7912 . . . . . . . 8 ((ℝ ∈ V ∧ 𝑋 ∈ Fin) → ((𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))) ∈ (ℝ ↑𝑚 𝑋) ↔ (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))):𝑋⟶ℝ))
8467, 68, 83syl2anc 694 . . . . . . 7 (𝜑 → ((𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))) ∈ (ℝ ↑𝑚 𝑋) ↔ (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))):𝑋⟶ℝ))
8584adantr 480 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → ((𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))) ∈ (ℝ ↑𝑚 𝑋) ↔ (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))):𝑋⟶ℝ))
8682, 85mpbird 247 . . . . 5 ((𝜑𝑗 ∈ ℕ) → (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))) ∈ (ℝ ↑𝑚 𝑋))
87 eqid 2651 . . . . 5 (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘)))) = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))))
8886, 87fmptd 6425 . . . 4 (𝜑 → (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘)))):ℕ⟶(ℝ ↑𝑚 𝑋))
89 ovncvr2.t . . . . . 6 𝑇 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))))
9089a1i 11 . . . . 5 (𝜑𝑇 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘)))))
9190feq1d 6068 . . . 4 (𝜑 → (𝑇:ℕ⟶(ℝ ↑𝑚 𝑋) ↔ (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘)))):ℕ⟶(ℝ ↑𝑚 𝑋)))
9288, 91mpbird 247 . . 3 (𝜑𝑇:ℕ⟶(ℝ ↑𝑚 𝑋))
9378, 92jca 553 . 2 (𝜑 → (𝐵:ℕ⟶(ℝ ↑𝑚 𝑋) ∧ 𝑇:ℕ⟶(ℝ ↑𝑚 𝑋)))
9415idi 2 . . . . . 6 (𝜑 → (𝐶𝐴) = {𝑙 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∣ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})
9552, 94eleqtrd 2732 . . . . 5 (𝜑𝐼 ∈ {𝑙 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∣ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})
96 fveq1 6228 . . . . . . . . . . . 12 (𝑙 = 𝐼 → (𝑙𝑗) = (𝐼𝑗))
9796coeq2d 5317 . . . . . . . . . . 11 (𝑙 = 𝐼 → ([,) ∘ (𝑙𝑗)) = ([,) ∘ (𝐼𝑗)))
9897fveq1d 6231 . . . . . . . . . 10 (𝑙 = 𝐼 → (([,) ∘ (𝑙𝑗))‘𝑘) = (([,) ∘ (𝐼𝑗))‘𝑘))
9998ixpeq2dv 7966 . . . . . . . . 9 (𝑙 = 𝐼X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘) = X𝑘𝑋 (([,) ∘ (𝐼𝑗))‘𝑘))
10099adantr 480 . . . . . . . 8 ((𝑙 = 𝐼𝑗 ∈ ℕ) → X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘) = X𝑘𝑋 (([,) ∘ (𝐼𝑗))‘𝑘))
101100iuneq2dv 4574 . . . . . . 7 (𝑙 = 𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘) = 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐼𝑗))‘𝑘))
102101sseq2d 3666 . . . . . 6 (𝑙 = 𝐼 → (𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘) ↔ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐼𝑗))‘𝑘)))
103102elrab 3396 . . . . 5 (𝐼 ∈ {𝑙 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∣ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)} ↔ (𝐼 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐼𝑗))‘𝑘)))
10495, 103sylib 208 . . . 4 (𝜑 → (𝐼 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐼𝑗))‘𝑘)))
105104simprd 478 . . 3 (𝜑𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐼𝑗))‘𝑘))
10660adantr 480 . . . . . . 7 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (𝐼𝑗):𝑋⟶(ℝ × ℝ))
107 simpr 476 . . . . . . 7 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → 𝑘𝑋)
108106, 107fvovco 39695 . . . . . 6 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (([,) ∘ (𝐼𝑗))‘𝑘) = ((1st ‘((𝐼𝑗)‘𝑘))[,)(2nd ‘((𝐼𝑗)‘𝑘))))
109 mptexg 6525 . . . . . . . . . . . 12 (𝑋 ∈ Fin → (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))) ∈ V)
11068, 109syl 17 . . . . . . . . . . 11 (𝜑 → (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))) ∈ V)
111110adantr 480 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))) ∈ V)
11276, 111fvmpt2d 6332 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (𝐵𝑗) = (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))))
113 fvexd 6241 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (1st ‘((𝐼𝑗)‘𝑘)) ∈ V)
114112, 113fvmpt2d 6332 . . . . . . . 8 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐵𝑗)‘𝑘) = (1st ‘((𝐼𝑗)‘𝑘)))
115114eqcomd 2657 . . . . . . 7 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (1st ‘((𝐼𝑗)‘𝑘)) = ((𝐵𝑗)‘𝑘))
116 mptexg 6525 . . . . . . . . . . . 12 (𝑋 ∈ Fin → (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))) ∈ V)
11768, 116syl 17 . . . . . . . . . . 11 (𝜑 → (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))) ∈ V)
118117adantr 480 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))) ∈ V)
11990, 118fvmpt2d 6332 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (𝑇𝑗) = (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))))
120 fvexd 6241 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (2nd ‘((𝐼𝑗)‘𝑘)) ∈ V)
121119, 120fvmpt2d 6332 . . . . . . . 8 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((𝑇𝑗)‘𝑘) = (2nd ‘((𝐼𝑗)‘𝑘)))
122121eqcomd 2657 . . . . . . 7 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (2nd ‘((𝐼𝑗)‘𝑘)) = ((𝑇𝑗)‘𝑘))
123115, 122oveq12d 6708 . . . . . 6 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((1st ‘((𝐼𝑗)‘𝑘))[,)(2nd ‘((𝐼𝑗)‘𝑘))) = (((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘)))
124108, 123eqtrd 2685 . . . . 5 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (([,) ∘ (𝐼𝑗))‘𝑘) = (((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘)))
125124ixpeq2dva 7965 . . . 4 ((𝜑𝑗 ∈ ℕ) → X𝑘𝑋 (([,) ∘ (𝐼𝑗))‘𝑘) = X𝑘𝑋 (((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘)))
126125iuneq2dv 4574 . . 3 (𝜑 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝐼𝑗))‘𝑘) = 𝑗 ∈ ℕ X𝑘𝑋 (((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘)))
127105, 126sseqtrd 3674 . 2 (𝜑𝐴 𝑗 ∈ ℕ X𝑘𝑋 (((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘)))
128 ovncvr2.l . . . . . . . 8 𝐿 = ( ∈ ((ℝ × ℝ) ↑𝑚 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))
129128a1i 11 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → 𝐿 = ( ∈ ((ℝ × ℝ) ↑𝑚 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘))))
130 coeq2 5313 . . . . . . . . . . . . 13 ( = (𝐼𝑗) → ([,) ∘ ) = ([,) ∘ (𝐼𝑗)))
131130fveq1d 6231 . . . . . . . . . . . 12 ( = (𝐼𝑗) → (([,) ∘ )‘𝑘) = (([,) ∘ (𝐼𝑗))‘𝑘))
132131ad2antlr 763 . . . . . . . . . . 11 (((𝜑 = (𝐼𝑗)) ∧ 𝑘𝑋) → (([,) ∘ )‘𝑘) = (([,) ∘ (𝐼𝑗))‘𝑘))
133132adantllr 755 . . . . . . . . . 10 ((((𝜑𝑗 ∈ ℕ) ∧ = (𝐼𝑗)) ∧ 𝑘𝑋) → (([,) ∘ )‘𝑘) = (([,) ∘ (𝐼𝑗))‘𝑘))
134108adantlr 751 . . . . . . . . . 10 ((((𝜑𝑗 ∈ ℕ) ∧ = (𝐼𝑗)) ∧ 𝑘𝑋) → (([,) ∘ (𝐼𝑗))‘𝑘) = ((1st ‘((𝐼𝑗)‘𝑘))[,)(2nd ‘((𝐼𝑗)‘𝑘))))
135123adantlr 751 . . . . . . . . . 10 ((((𝜑𝑗 ∈ ℕ) ∧ = (𝐼𝑗)) ∧ 𝑘𝑋) → ((1st ‘((𝐼𝑗)‘𝑘))[,)(2nd ‘((𝐼𝑗)‘𝑘))) = (((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘)))
136133, 134, 1353eqtrd 2689 . . . . . . . . 9 ((((𝜑𝑗 ∈ ℕ) ∧ = (𝐼𝑗)) ∧ 𝑘𝑋) → (([,) ∘ )‘𝑘) = (((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘)))
137136fveq2d 6233 . . . . . . . 8 ((((𝜑𝑗 ∈ ℕ) ∧ = (𝐼𝑗)) ∧ 𝑘𝑋) → (vol‘(([,) ∘ )‘𝑘)) = (vol‘(((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))))
138137prodeq2dv 14697 . . . . . . 7 (((𝜑𝑗 ∈ ℕ) ∧ = (𝐼𝑗)) → ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)) = ∏𝑘𝑋 (vol‘(((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))))
13968adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → 𝑋 ∈ Fin)
14075fvmpt2 6330 . . . . . . . . . . . . . 14 ((𝑗 ∈ ℕ ∧ (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))) ∈ V) → (𝐵𝑗) = (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))))
14157, 111, 140syl2anc 694 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → (𝐵𝑗) = (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))))
142141feq1d 6068 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → ((𝐵𝑗):𝑋⟶ℝ ↔ (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))):𝑋⟶ℝ))
14365, 142mpbird 247 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (𝐵𝑗):𝑋⟶ℝ)
144143adantr 480 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (𝐵𝑗):𝑋⟶ℝ)
145144, 107ffvelrnd 6400 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐵𝑗)‘𝑘) ∈ ℝ)
14689fvmpt2 6330 . . . . . . . . . . . . . 14 ((𝑗 ∈ ℕ ∧ (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))) ∈ V) → (𝑇𝑗) = (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))))
14757, 118, 146syl2anc 694 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → (𝑇𝑗) = (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))))
148147feq1d 6068 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → ((𝑇𝑗):𝑋⟶ℝ ↔ (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))):𝑋⟶ℝ))
14982, 148mpbird 247 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (𝑇𝑗):𝑋⟶ℝ)
150149adantr 480 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (𝑇𝑗):𝑋⟶ℝ)
151150, 107ffvelrnd 6400 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((𝑇𝑗)‘𝑘) ∈ ℝ)
152 volicore 41116 . . . . . . . . 9 ((((𝐵𝑗)‘𝑘) ∈ ℝ ∧ ((𝑇𝑗)‘𝑘) ∈ ℝ) → (vol‘(((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))) ∈ ℝ)
153145, 151, 152syl2anc 694 . . . . . . . 8 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (vol‘(((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))) ∈ ℝ)
154139, 153fprodrecl 14727 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → ∏𝑘𝑋 (vol‘(((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))) ∈ ℝ)
155129, 138, 58, 154fvmptd 6327 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → (𝐿‘(𝐼𝑗)) = ∏𝑘𝑋 (vol‘(((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))))
156155eqcomd 2657 . . . . 5 ((𝜑𝑗 ∈ ℕ) → ∏𝑘𝑋 (vol‘(((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))) = (𝐿‘(𝐼𝑗)))
157156mpteq2dva 4777 . . . 4 (𝜑 → (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘)))) = (𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗))))
158157fveq2d 6233 . . 3 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))))) = (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))))
15951simprd 478 . . 3 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))
160158, 159eqbrtrd 4707 . 2 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))
16193, 127, 160jca31 556 1 (𝜑 → (((𝐵:ℕ⟶(ℝ ↑𝑚 𝑋) ∧ 𝑇:ℕ⟶(ℝ ↑𝑚 𝑋)) ∧ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  {crab 2945  Vcvv 3231  wss 3607  𝒫 cpw 4191   ciun 4552   class class class wbr 4685  cmpt 4762   × cxp 5141  ccom 5147  wf 5922  cfv 5926  (class class class)co 6690  1st c1st 7208  2nd c2nd 7209  𝑚 cmap 7899  Xcixp 7950  Fincfn 7997  cr 9973  cle 10113  cn 11058  +crp 11870   +𝑒 cxad 11982  [,)cico 12215  cprod 14679  volcvol 23278  Σ^csumge0 40897  voln*covoln 41071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-tpos 7397  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-rlim 14264  df-sum 14461  df-prod 14680  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-rest 16130  df-0g 16149  df-topgen 16151  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-grp 17472  df-minusg 17473  df-subg 17638  df-cmn 18241  df-abl 18242  df-mgp 18536  df-ur 18548  df-ring 18595  df-cring 18596  df-oppr 18669  df-dvdsr 18687  df-unit 18688  df-invr 18718  df-dvr 18729  df-drng 18797  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-cnfld 19795  df-top 20747  df-topon 20764  df-bases 20798  df-cmp 21238  df-ovol 23279  df-vol 23280
This theorem is referenced by:  hspmbllem3  41163
  Copyright terms: Public domain W3C validator