![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ovmpt2x2 | Structured version Visualization version GIF version |
Description: The value of an operation class abstraction. Variant of ovmpt2ga 6935 which does not require 𝐷 and 𝑥 to be distinct. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 20-Dec-2013.) |
Ref | Expression |
---|---|
ovmpt2x2.1 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑅 = 𝑆) |
ovmpt2x2.2 | ⊢ (𝑦 = 𝐵 → 𝐶 = 𝐿) |
ovmpt2x2.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) |
Ref | Expression |
---|---|
ovmpt2x2 | ⊢ ((𝐴 ∈ 𝐿 ∧ 𝐵 ∈ 𝐷 ∧ 𝑆 ∈ 𝐻) → (𝐴𝐹𝐵) = 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovmpt2x2.3 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝐴 ∈ 𝐿 ∧ 𝐵 ∈ 𝐷 ∧ 𝑆 ∈ 𝐻) → 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)) |
3 | ovmpt2x2.1 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑅 = 𝑆) | |
4 | 3 | adantl 474 | . 2 ⊢ (((𝐴 ∈ 𝐿 ∧ 𝐵 ∈ 𝐷 ∧ 𝑆 ∈ 𝐻) ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑅 = 𝑆) |
5 | ovmpt2x2.2 | . . 3 ⊢ (𝑦 = 𝐵 → 𝐶 = 𝐿) | |
6 | 5 | adantl 474 | . 2 ⊢ (((𝐴 ∈ 𝐿 ∧ 𝐵 ∈ 𝐷 ∧ 𝑆 ∈ 𝐻) ∧ 𝑦 = 𝐵) → 𝐶 = 𝐿) |
7 | simp1 1128 | . 2 ⊢ ((𝐴 ∈ 𝐿 ∧ 𝐵 ∈ 𝐷 ∧ 𝑆 ∈ 𝐻) → 𝐴 ∈ 𝐿) | |
8 | simp2 1129 | . 2 ⊢ ((𝐴 ∈ 𝐿 ∧ 𝐵 ∈ 𝐷 ∧ 𝑆 ∈ 𝐻) → 𝐵 ∈ 𝐷) | |
9 | simp3 1130 | . 2 ⊢ ((𝐴 ∈ 𝐿 ∧ 𝐵 ∈ 𝐷 ∧ 𝑆 ∈ 𝐻) → 𝑆 ∈ 𝐻) | |
10 | 2, 4, 6, 7, 8, 9 | ovmpt2rdx 42643 | 1 ⊢ ((𝐴 ∈ 𝐿 ∧ 𝐵 ∈ 𝐷 ∧ 𝑆 ∈ 𝐻) → (𝐴𝐹𝐵) = 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1069 = wceq 1629 ∈ wcel 2143 (class class class)co 6791 ↦ cmpt2 6793 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1868 ax-4 1883 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2152 ax-10 2172 ax-11 2188 ax-12 2201 ax-13 2406 ax-ext 2749 ax-sep 4911 ax-nul 4919 ax-pr 5033 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1071 df-tru 1632 df-ex 1851 df-nf 1856 df-sb 2048 df-eu 2620 df-mo 2621 df-clab 2756 df-cleq 2762 df-clel 2765 df-nfc 2900 df-ral 3064 df-rex 3065 df-rab 3068 df-v 3350 df-sbc 3585 df-dif 3723 df-un 3725 df-in 3727 df-ss 3734 df-nul 4061 df-if 4223 df-sn 4314 df-pr 4316 df-op 4320 df-uni 4572 df-br 4784 df-opab 4844 df-id 5156 df-xp 5254 df-rel 5255 df-cnv 5256 df-co 5257 df-dm 5258 df-iota 5993 df-fun 6032 df-fv 6038 df-ov 6794 df-oprab 6795 df-mpt2 6796 |
This theorem is referenced by: lincval 42723 |
Copyright terms: Public domain | W3C validator |