MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovmpt2s Structured version   Visualization version   GIF version

Theorem ovmpt2s 6826
Description: Value of a function given by the "maps to" notation, expressed using explicit substitution. (Contributed by Mario Carneiro, 30-Apr-2015.)
Hypothesis
Ref Expression
ovmpt2s.3 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
Assertion
Ref Expression
ovmpt2s ((𝐴𝐶𝐵𝐷𝐴 / 𝑥𝐵 / 𝑦𝑅𝑉) → (𝐴𝐹𝐵) = 𝐴 / 𝑥𝐵 / 𝑦𝑅)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem ovmpt2s
StepHypRef Expression
1 elex 3243 . . 3 (𝐴 / 𝑥𝐵 / 𝑦𝑅𝑉𝐴 / 𝑥𝐵 / 𝑦𝑅 ∈ V)
2 nfcv 2793 . . . . 5 𝑥𝐴
3 nfcv 2793 . . . . 5 𝑦𝐴
4 nfcv 2793 . . . . 5 𝑦𝐵
5 nfcsb1v 3582 . . . . . . 7 𝑥𝐴 / 𝑥𝑅
65nfel1 2808 . . . . . 6 𝑥𝐴 / 𝑥𝑅 ∈ V
7 ovmpt2s.3 . . . . . . . . 9 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
8 nfmpt21 6764 . . . . . . . . 9 𝑥(𝑥𝐶, 𝑦𝐷𝑅)
97, 8nfcxfr 2791 . . . . . . . 8 𝑥𝐹
10 nfcv 2793 . . . . . . . 8 𝑥𝑦
112, 9, 10nfov 6716 . . . . . . 7 𝑥(𝐴𝐹𝑦)
1211, 5nfeq 2805 . . . . . 6 𝑥(𝐴𝐹𝑦) = 𝐴 / 𝑥𝑅
136, 12nfim 1865 . . . . 5 𝑥(𝐴 / 𝑥𝑅 ∈ V → (𝐴𝐹𝑦) = 𝐴 / 𝑥𝑅)
14 nfcsb1v 3582 . . . . . . 7 𝑦𝐵 / 𝑦𝐴 / 𝑥𝑅
1514nfel1 2808 . . . . . 6 𝑦𝐵 / 𝑦𝐴 / 𝑥𝑅 ∈ V
16 nfmpt22 6765 . . . . . . . . 9 𝑦(𝑥𝐶, 𝑦𝐷𝑅)
177, 16nfcxfr 2791 . . . . . . . 8 𝑦𝐹
183, 17, 4nfov 6716 . . . . . . 7 𝑦(𝐴𝐹𝐵)
1918, 14nfeq 2805 . . . . . 6 𝑦(𝐴𝐹𝐵) = 𝐵 / 𝑦𝐴 / 𝑥𝑅
2015, 19nfim 1865 . . . . 5 𝑦(𝐵 / 𝑦𝐴 / 𝑥𝑅 ∈ V → (𝐴𝐹𝐵) = 𝐵 / 𝑦𝐴 / 𝑥𝑅)
21 csbeq1a 3575 . . . . . . 7 (𝑥 = 𝐴𝑅 = 𝐴 / 𝑥𝑅)
2221eleq1d 2715 . . . . . 6 (𝑥 = 𝐴 → (𝑅 ∈ V ↔ 𝐴 / 𝑥𝑅 ∈ V))
23 oveq1 6697 . . . . . . 7 (𝑥 = 𝐴 → (𝑥𝐹𝑦) = (𝐴𝐹𝑦))
2423, 21eqeq12d 2666 . . . . . 6 (𝑥 = 𝐴 → ((𝑥𝐹𝑦) = 𝑅 ↔ (𝐴𝐹𝑦) = 𝐴 / 𝑥𝑅))
2522, 24imbi12d 333 . . . . 5 (𝑥 = 𝐴 → ((𝑅 ∈ V → (𝑥𝐹𝑦) = 𝑅) ↔ (𝐴 / 𝑥𝑅 ∈ V → (𝐴𝐹𝑦) = 𝐴 / 𝑥𝑅)))
26 csbeq1a 3575 . . . . . . 7 (𝑦 = 𝐵𝐴 / 𝑥𝑅 = 𝐵 / 𝑦𝐴 / 𝑥𝑅)
2726eleq1d 2715 . . . . . 6 (𝑦 = 𝐵 → (𝐴 / 𝑥𝑅 ∈ V ↔ 𝐵 / 𝑦𝐴 / 𝑥𝑅 ∈ V))
28 oveq2 6698 . . . . . . 7 (𝑦 = 𝐵 → (𝐴𝐹𝑦) = (𝐴𝐹𝐵))
2928, 26eqeq12d 2666 . . . . . 6 (𝑦 = 𝐵 → ((𝐴𝐹𝑦) = 𝐴 / 𝑥𝑅 ↔ (𝐴𝐹𝐵) = 𝐵 / 𝑦𝐴 / 𝑥𝑅))
3027, 29imbi12d 333 . . . . 5 (𝑦 = 𝐵 → ((𝐴 / 𝑥𝑅 ∈ V → (𝐴𝐹𝑦) = 𝐴 / 𝑥𝑅) ↔ (𝐵 / 𝑦𝐴 / 𝑥𝑅 ∈ V → (𝐴𝐹𝐵) = 𝐵 / 𝑦𝐴 / 𝑥𝑅)))
317ovmpt4g 6825 . . . . . 6 ((𝑥𝐶𝑦𝐷𝑅 ∈ V) → (𝑥𝐹𝑦) = 𝑅)
32313expia 1286 . . . . 5 ((𝑥𝐶𝑦𝐷) → (𝑅 ∈ V → (𝑥𝐹𝑦) = 𝑅))
332, 3, 4, 13, 20, 25, 30, 32vtocl2gaf 3304 . . . 4 ((𝐴𝐶𝐵𝐷) → (𝐵 / 𝑦𝐴 / 𝑥𝑅 ∈ V → (𝐴𝐹𝐵) = 𝐵 / 𝑦𝐴 / 𝑥𝑅))
34 csbcom 4027 . . . . 5 𝐴 / 𝑥𝐵 / 𝑦𝑅 = 𝐵 / 𝑦𝐴 / 𝑥𝑅
3534eleq1i 2721 . . . 4 (𝐴 / 𝑥𝐵 / 𝑦𝑅 ∈ V ↔ 𝐵 / 𝑦𝐴 / 𝑥𝑅 ∈ V)
3634eqeq2i 2663 . . . 4 ((𝐴𝐹𝐵) = 𝐴 / 𝑥𝐵 / 𝑦𝑅 ↔ (𝐴𝐹𝐵) = 𝐵 / 𝑦𝐴 / 𝑥𝑅)
3733, 35, 363imtr4g 285 . . 3 ((𝐴𝐶𝐵𝐷) → (𝐴 / 𝑥𝐵 / 𝑦𝑅 ∈ V → (𝐴𝐹𝐵) = 𝐴 / 𝑥𝐵 / 𝑦𝑅))
381, 37syl5 34 . 2 ((𝐴𝐶𝐵𝐷) → (𝐴 / 𝑥𝐵 / 𝑦𝑅𝑉 → (𝐴𝐹𝐵) = 𝐴 / 𝑥𝐵 / 𝑦𝑅))
39383impia 1280 1 ((𝐴𝐶𝐵𝐷𝐴 / 𝑥𝐵 / 𝑦𝑅𝑉) → (𝐴𝐹𝐵) = 𝐴 / 𝑥𝐵 / 𝑦𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030  Vcvv 3231  csb 3566  (class class class)co 6690  cmpt2 6692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-iota 5889  df-fun 5928  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695
This theorem is referenced by:  finxpreclem2  33357
  Copyright terms: Public domain W3C validator