![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovmpt2g | Structured version Visualization version GIF version |
Description: Value of an operation given by a maps-to rule. Special case. (Contributed by NM, 14-Sep-1999.) (Revised by David Abernethy, 19-Jun-2012.) |
Ref | Expression |
---|---|
ovmpt2g.1 | ⊢ (𝑥 = 𝐴 → 𝑅 = 𝐺) |
ovmpt2g.2 | ⊢ (𝑦 = 𝐵 → 𝐺 = 𝑆) |
ovmpt2g.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) |
Ref | Expression |
---|---|
ovmpt2g | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝑆 ∈ 𝐻) → (𝐴𝐹𝐵) = 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovmpt2g.1 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑅 = 𝐺) | |
2 | ovmpt2g.2 | . . 3 ⊢ (𝑦 = 𝐵 → 𝐺 = 𝑆) | |
3 | 1, 2 | sylan9eq 2824 | . 2 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑅 = 𝑆) |
4 | ovmpt2g.3 | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) | |
5 | 3, 4 | ovmpt2ga 6936 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝑆 ∈ 𝐻) → (𝐴𝐹𝐵) = 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1070 = wceq 1630 ∈ wcel 2144 (class class class)co 6792 ↦ cmpt2 6794 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-sbc 3586 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-br 4785 df-opab 4845 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-iota 5994 df-fun 6033 df-fv 6039 df-ov 6795 df-oprab 6796 df-mpt2 6797 |
This theorem is referenced by: ovmpt2 6942 mapvalg 8018 pmvalg 8019 cdaval 9193 genpv 10022 shftfval 14017 symgov 18016 frlmipval 20334 bcthlem1 23339 motplusg 25657 signspval 30963 elghomlem1OLD 34009 paddval 35599 tgrpov 36550 erngmul 36608 erngmul-rN 36616 dvamulr 36814 dvavadd 36817 dvhmulr 36889 djavalN 36938 djhval 37201 mendmulr 38277 |
Copyright terms: Public domain | W3C validator |