Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovigg Structured version   Visualization version   GIF version

Theorem ovigg 6928
 Description: The value of an operation class abstraction. Compare ovig 6929. The condition (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) is been removed. (Contributed by FL, 24-Mar-2007.) (Revised by Mario Carneiro, 19-Dec-2013.)
Hypotheses
Ref Expression
ovigg.1 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝜑𝜓))
ovigg.4 ∃*𝑧𝜑
ovigg.5 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
Assertion
Ref Expression
ovigg ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝜓 → (𝐴𝐹𝐵) = 𝐶))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝜓,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐹(𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)   𝑊(𝑥,𝑦,𝑧)   𝑋(𝑥,𝑦,𝑧)

Proof of Theorem ovigg
StepHypRef Expression
1 ovigg.1 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝜑𝜓))
21eloprabga 6894 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ 𝜓))
3 df-ov 6796 . . . 4 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
4 ovigg.5 . . . . 5 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
54fveq1i 6333 . . . 4 (𝐹‘⟨𝐴, 𝐵⟩) = ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}‘⟨𝐴, 𝐵⟩)
63, 5eqtri 2793 . . 3 (𝐴𝐹𝐵) = ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}‘⟨𝐴, 𝐵⟩)
7 ovigg.4 . . . . 5 ∃*𝑧𝜑
87funoprab 6907 . . . 4 Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
9 funopfv 6376 . . . 4 (Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}‘⟨𝐴, 𝐵⟩) = 𝐶))
108, 9ax-mp 5 . . 3 (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}‘⟨𝐴, 𝐵⟩) = 𝐶)
116, 10syl5eq 2817 . 2 (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} → (𝐴𝐹𝐵) = 𝐶)
122, 11syl6bir 244 1 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝜓 → (𝐴𝐹𝐵) = 𝐶))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ w3a 1071   = wceq 1631   ∈ wcel 2145  ∃*wmo 2619  ⟨cop 4322  Fun wfun 6025  ‘cfv 6031  (class class class)co 6793  {coprab 6794 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pr 5034 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-iota 5994  df-fun 6033  df-fv 6039  df-ov 6796  df-oprab 6797 This theorem is referenced by:  ovig  6929  joinval  17213  meetval  17227
 Copyright terms: Public domain W3C validator