![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oveqdr | Structured version Visualization version GIF version |
Description: Equality of two operations for any two operands. Useful in proofs using *propd theorems. (Contributed by Mario Carneiro, 29-Jun-2015.) |
Ref | Expression |
---|---|
oveqdr.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
Ref | Expression |
---|---|
oveqdr | ⊢ ((𝜑 ∧ 𝜓) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveqdr.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
2 | 1 | oveqd 6822 | . 2 ⊢ (𝜑 → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
3 | 2 | adantr 472 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1624 (class class class)co 6805 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-rex 3048 df-uni 4581 df-br 4797 df-iota 6004 df-fv 6049 df-ov 6808 |
This theorem is referenced by: fullresc 16704 fucpropd 16830 resssetc 16935 resscatc 16948 issstrmgm 17445 gsumpropd 17465 grpsubpropd 17713 sylow2blem2 18228 isringd 18777 prdsringd 18804 prdscrngd 18805 prds1 18806 pwsco1rhm 18932 pwsco2rhm 18933 pwsdiagrhm 19007 sralmod 19381 sralmod0 19382 issubrngd2 19383 isdomn 19488 sraassa 19519 opsrcrng 19682 opsrassa 19683 ply1lss 19760 ply1subrg 19761 opsr0 19782 opsr1 19783 subrgply1 19797 opsrring 19809 opsrlmod 19810 ply1mpl0 19819 ply1mpl1 19821 ply1ascl 19822 coe1tm 19837 evls1rhm 19881 evl1rhm 19890 evl1expd 19903 znzrh 20085 zncrng 20087 mat0 20417 matinvg 20418 matlmod 20429 scmatsrng1 20523 1mavmul 20548 mat2pmatmul 20730 ressprdsds 22369 nmpropd 22591 tng0 22640 tngngp2 22649 tnggrpr 22652 tngnrg 22671 sranlm 22681 tchphl 23218 istrkgc 25544 istrkgb 25545 abvpropd2 29953 resv0g 30137 resvcmn 30139 zhmnrg 30312 prdsbnd 33897 prdstotbnd 33898 prdsbnd2 33899 erngdvlem3 36772 erngdvlem3-rN 36780 hlhils0 37731 hlhils1N 37732 hlhillvec 37737 hlhildrng 37738 hlhil0 37741 hlhillsm 37742 mendval 38247 issubmgm2 42292 rnghmval 42393 lidlmmgm 42427 rnghmsubcsetclem1 42477 rnghmsubcsetclem2 42478 rngcifuestrc 42499 rhmsubcsetclem1 42523 rhmsubcsetclem2 42524 rhmsubcrngclem1 42529 rhmsubcrngclem2 42530 |
Copyright terms: Public domain | W3C validator |