![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oveqan12rd | Structured version Visualization version GIF version |
Description: Equality deduction for operation value. (Contributed by NM, 10-Aug-1995.) |
Ref | Expression |
---|---|
oveq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
opreqan12i.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
oveqan12rd | ⊢ ((𝜓 ∧ 𝜑) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | opreqan12i.2 | . . 3 ⊢ (𝜓 → 𝐶 = 𝐷) | |
3 | 1, 2 | oveqan12d 6833 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
4 | 3 | ancoms 468 | 1 ⊢ ((𝜓 ∧ 𝜑) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 (class class class)co 6814 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-iota 6012 df-fv 6057 df-ov 6817 |
This theorem is referenced by: addpipq 9971 mulgt0sr 10138 mulcnsr 10169 mulresr 10172 recdiv 10943 revccat 13735 rlimdiv 14595 caucvg 14628 divgcdcoprm0 15601 estrchom 16988 funcestrcsetclem5 17005 ismhm 17558 mpfrcl 19740 xrsdsval 20012 matval 20439 ucnval 22302 volcn 23594 dvres2lem 23893 dvid 23900 c1lip3 23981 taylthlem1 24346 abelthlem9 24413 brbtwn2 26005 nonbooli 28840 0cnop 29168 0cnfn 29169 idcnop 29170 bccolsum 31953 ftc1anc 33824 rmydioph 38101 expdiophlem2 38109 dvcosax 40662 ismgmhm 42311 2zrngamgm 42467 rnghmsscmap2 42501 rnghmsscmap 42502 funcrngcsetc 42526 rhmsscmap2 42547 rhmsscmap 42548 funcringcsetc 42563 |
Copyright terms: Public domain | W3C validator |