![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oveqan12d | Structured version Visualization version GIF version |
Description: Equality deduction for operation value. (Contributed by NM, 10-Aug-1995.) |
Ref | Expression |
---|---|
oveq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
opreqan12i.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
oveqan12d | ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | opreqan12i.2 | . 2 ⊢ (𝜓 → 𝐶 = 𝐷) | |
3 | oveq12 6699 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) | |
4 | 1, 2, 3 | syl2an 493 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 (class class class)co 6690 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-iota 5889 df-fv 5934 df-ov 6693 |
This theorem is referenced by: oveqan12rd 6710 offval 6946 offval3 7204 odi 7704 omopth2 7709 oeoa 7722 ecovdi 7898 ackbij1lem9 9088 alephadd 9437 distrpi 9758 addpipq 9797 mulpipq 9800 lterpq 9830 reclem3pr 9909 1idsr 9957 mulcnsr 9995 mulid1 10075 1re 10077 mul02 10252 addcom 10260 mulsub 10511 mulsub2 10512 muleqadd 10709 divmuldiv 10763 div2sub 10888 addltmul 11306 xnegdi 12116 xadddilem 12162 fzsubel 12415 fzoval 12510 seqid3 12885 mulexp 12939 sqdiv 12968 hashdom 13206 hashun 13209 ccatfval 13391 splcl 13549 crim 13899 readd 13910 remullem 13912 imadd 13918 cjadd 13925 cjreim 13944 sqrtmul 14044 sqabsadd 14066 sqabssub 14067 absmul 14078 abs2dif 14116 binom 14606 binomfallfac 14816 sinadd 14938 cosadd 14939 dvds2ln 15061 sadcaddlem 15226 bezoutlem4 15306 bezout 15307 absmulgcd 15313 gcddiv 15315 bezoutr1 15329 lcmgcd 15367 lcmfass 15406 nn0gcdsq 15507 crth 15530 pythagtriplem1 15568 pcqmul 15605 4sqlem4a 15702 4sqlem4 15703 prdsplusgval 16180 prdsmulrval 16182 prdsdsval 16185 prdsvscaval 16186 xpsfval 16274 xpsval 16279 idmhm 17391 0mhm 17405 resmhm 17406 prdspjmhm 17414 pwsdiagmhm 17416 gsumws2 17426 frmdup1 17448 eqgval 17690 idghm 17722 resghm 17723 mulgmhm 18279 mulgghm 18280 srglmhm 18581 srgrmhm 18582 ringlghm 18650 ringrghm 18651 gsumdixp 18655 isrhm 18769 issrngd 18909 lmodvsghm 18972 pwssplit2 19108 asclghm 19386 psrmulfval 19433 evlslem4 19556 mpfrcl 19566 xrsdsval 19838 expmhm 19863 expghm 19892 mulgghm2 19893 mulgrhm 19894 cygznlem3 19966 mamuval 20240 mamufv 20241 mvmulval 20397 mndifsplit 20490 mat2pmatmul 20584 decpmatmul 20625 fmval 21794 fmf 21796 flffval 21840 divcn 22718 rescncf 22747 htpyco1 22824 tchcph 23082 volun 23359 dyadval 23406 dvlip 23801 ftc1a 23845 ftc2ditglem 23853 tdeglem3 23864 q1pval 23958 reefgim 24249 relogoprlem 24382 eflogeq 24393 zetacvg 24786 lgsdir2 25100 lgsdchr 25125 brbtwn2 25830 ax5seglem4 25857 axeuclid 25888 axcontlem2 25890 axcontlem4 25892 axcontlem8 25896 clwwlknccat 27333 ipasslem11 27823 hhssnv 28249 mayete3i 28715 idunop 28965 idhmop 28969 0lnfn 28972 lnopmi 28987 lnophsi 28988 lnopcoi 28990 hmops 29007 hmopm 29008 nlelshi 29047 cnlnadjlem2 29055 kbass6 29108 strlem3a 29239 hstrlem3a 29247 bhmafibid1 29772 mndpluscn 30100 xrge0iifhom 30111 rezh 30143 probdsb 30612 resconn 31354 iscvm 31367 fwddifnval 32395 bj-bary1 33292 poimirlem15 33554 mbfposadd 33587 ftc1anclem3 33617 rrnmval 33757 dvhopaddN 36720 pellex 37716 rmxfval 37785 rmyfval 37786 qirropth 37790 rmxycomplete 37799 jm2.15nn0 37887 rmxdioph 37900 expdiophlem2 37906 mendvsca 38078 deg1mhm 38102 addrval 38987 subrval 38988 fmulcl 40131 fmuldfeqlem1 40132 idmgmhm 42113 resmgmhm 42123 rhmval 42244 offval0 42624 |
Copyright terms: Public domain | W3C validator |