![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oveq123d | Structured version Visualization version GIF version |
Description: Equality deduction for operation value. (Contributed by FL, 22-Dec-2008.) |
Ref | Expression |
---|---|
oveq123d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
oveq123d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
oveq123d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
oveq123d | ⊢ (𝜑 → (𝐴𝐹𝐶) = (𝐵𝐺𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq123d.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
2 | 1 | oveqd 6822 | . 2 ⊢ (𝜑 → (𝐴𝐹𝐶) = (𝐴𝐺𝐶)) |
3 | oveq123d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
4 | oveq123d.3 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
5 | 3, 4 | oveq12d 6823 | . 2 ⊢ (𝜑 → (𝐴𝐺𝐶) = (𝐵𝐺𝐷)) |
6 | 2, 5 | eqtrd 2786 | 1 ⊢ (𝜑 → (𝐴𝐹𝐶) = (𝐵𝐺𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1624 (class class class)co 6805 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-rex 3048 df-rab 3051 df-v 3334 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-nul 4051 df-if 4223 df-sn 4314 df-pr 4316 df-op 4320 df-uni 4581 df-br 4797 df-iota 6004 df-fv 6049 df-ov 6808 |
This theorem is referenced by: csbov123 6842 prdsplusgfval 16328 prdsmulrfval 16330 prdsvscafval 16334 prdsdsval2 16338 xpsaddlem 16429 xpsvsca 16433 iscat 16526 iscatd 16527 iscatd2 16535 catcocl 16539 catass 16540 moni 16589 rcaninv 16647 subccocl 16698 isfunc 16717 funcco 16724 idfucl 16734 cofuval 16735 cofuval2 16740 cofucl 16741 funcres 16749 ressffth 16791 isnat 16800 nati 16808 fuccoval 16816 coaval 16911 catcisolem 16949 xpcco 17016 xpcco2 17020 1stfcl 17030 2ndfcl 17031 prfcl 17036 evlf2 17051 evlfcllem 17054 evlfcl 17055 curfval 17056 curf1 17058 curf12 17060 curf1cl 17061 curf2 17062 curf2val 17063 curf2cl 17064 curfcl 17065 uncfcurf 17072 hofval 17085 hof2fval 17088 hofcl 17092 yonedalem4a 17108 yonedalem3 17113 yonedainv 17114 isdlat 17386 issgrp 17478 ismndd 17506 grpsubfval 17657 grpsubpropd 17713 imasgrp 17724 subgsub 17799 eqgfval 17835 dpjfval 18646 issrg 18699 isring 18743 isringd 18777 dvrfval 18876 isdrngd 18966 issrngd 19055 islmodd 19063 isassa 19509 isassad 19517 asclfval 19528 ressascl 19538 psrval 19556 coe1tm 19837 evl1varpw 19919 isphld 20193 pjfval 20244 islindf 20345 scmatval 20504 mdetfval 20586 smadiadetr 20675 pmatcollpw2lem 20776 pm2mpval 20794 pm2mpghm 20815 chpmatfval 20829 cpmadugsumlemB 20873 xkohmeo 21812 xpsdsval 22379 prdsxmslem2 22527 nmfval 22586 nmpropd 22591 nmpropd2 22592 subgnm 22630 tngnm 22648 cph2di 23199 cphassr 23204 ipcau2 23225 tchcphlem2 23227 q1pval 24104 r1pval 24107 dvntaylp 24316 israg 25783 ttgval 25946 grpodivfval 27689 dipfval 27858 lnoval 27908 ressnm 29952 isslmd 30056 qqhval 30319 sitgval 30695 rdgeqoa 33521 prdsbnd2 33899 isrngo 34001 lflset 34841 islfld 34844 ldualset 34907 cmtfvalN 34992 isoml 35020 ltrnfset 35898 trlfset 35942 docaffvalN 36904 diblss 36953 dihffval 37013 dihfval 37014 hvmapffval 37541 hvmapfval 37542 hgmapfval 37672 mendval 38247 hoidmvlelem3 41309 hspmbllem2 41339 isasslaw 42330 isrng 42378 lidlmsgrp 42428 lidlrng 42429 zlmodzxzscm 42637 lcoop 42702 lincvalsng 42707 lincvalpr 42709 lincdifsn 42715 islininds 42737 |
Copyright terms: Public domain | W3C validator |