![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oveq | Structured version Visualization version GIF version |
Description: Equality theorem for operation value. (Contributed by NM, 28-Feb-1995.) |
Ref | Expression |
---|---|
oveq | ⊢ (𝐹 = 𝐺 → (𝐴𝐹𝐵) = (𝐴𝐺𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 6228 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹‘〈𝐴, 𝐵〉) = (𝐺‘〈𝐴, 𝐵〉)) | |
2 | df-ov 6693 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
3 | df-ov 6693 | . 2 ⊢ (𝐴𝐺𝐵) = (𝐺‘〈𝐴, 𝐵〉) | |
4 | 1, 2, 3 | 3eqtr4g 2710 | 1 ⊢ (𝐹 = 𝐺 → (𝐴𝐹𝐵) = (𝐴𝐺𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 〈cop 4216 ‘cfv 5926 (class class class)co 6690 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-rex 2947 df-uni 4469 df-br 4686 df-iota 5889 df-fv 5934 df-ov 6693 |
This theorem is referenced by: oveqi 6703 oveqd 6707 ifov 6782 ovmpt2df 6834 ovmpt2dv2 6836 seqomeq12 7594 mapxpen 8167 seqeq2 12845 relexp0g 13806 relexpsucnnr 13809 ismgm 17290 issgrp 17332 ismnddef 17343 grpissubg 17661 isga 17770 islmod 18915 lmodfopne 18949 mamuval 20240 dmatel 20347 dmatmulcl 20354 scmate 20364 scmateALT 20366 mvmulval 20397 marrepval0 20415 marepvval0 20420 submaval0 20434 mdetleib 20441 mdetleib1 20445 mdet0pr 20446 mdetunilem1 20466 maduval 20492 minmar1val0 20501 cpmatel 20564 mat2pmatval 20577 cpm2mval 20603 decpmatval0 20617 pmatcollpw3lem 20636 mptcoe1matfsupp 20655 mp2pm2mplem4 20662 chpscmat 20695 ispsmet 22156 ismet 22175 isxmet 22176 ishtpy 22818 isphtpy 22827 isgrpo 27479 gidval 27494 grpoinvfval 27504 isablo 27528 vciOLD 27544 isvclem 27560 isnvlem 27593 isphg 27800 ofceq 30287 cvmlift2lem13 31423 ismtyval 33729 isass 33775 isexid 33776 elghomlem1OLD 33814 iscom2 33924 iscllaw 42150 iscomlaw 42151 isasslaw 42153 isrng 42201 dmatALTbasel 42516 |
Copyright terms: Public domain | W3C validator |