Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  outsideoftr Structured version   Visualization version   GIF version

Theorem outsideoftr 32361
Description: Transitivity law for outsideness. Theorem 6.7 of [Schwabhauser] p. 44. (Contributed by Scott Fenton, 18-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
outsideoftr ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → ((𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ 𝑃OutsideOf⟨𝐵, 𝐶⟩) → 𝑃OutsideOf⟨𝐴, 𝐶⟩))

Proof of Theorem outsideoftr
StepHypRef Expression
1 simpll 805 . . . . 5 (((𝐴𝑃𝐵𝑃) ∧ (𝐵𝑃𝐶𝑃)) → 𝐴𝑃)
2 simplr 807 . . . . 5 (((𝐴𝑃𝐵𝑃) ∧ (𝐵𝑃𝐶𝑃)) → 𝐵𝑃)
3 simprr 811 . . . . 5 (((𝐴𝑃𝐵𝑃) ∧ (𝐵𝑃𝐶𝑃)) → 𝐶𝑃)
41, 2, 33jca 1261 . . . 4 (((𝐴𝑃𝐵𝑃) ∧ (𝐵𝑃𝐶𝑃)) → (𝐴𝑃𝐵𝑃𝐶𝑃))
5 simplr1 1123 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑃𝐵𝑃𝐶𝑃)) ∧ ((𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ (𝐵 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐵⟩))) → 𝐴𝑃)
6 simplr3 1125 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑃𝐵𝑃𝐶𝑃)) ∧ ((𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ (𝐵 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐵⟩))) → 𝐶𝑃)
7 df-3an 1056 . . . . . . . . . . . 12 (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩ ∧ 𝐵 Btwn ⟨𝑃, 𝐶⟩) ↔ (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩) ∧ 𝐵 Btwn ⟨𝑃, 𝐶⟩))
8 simp1 1081 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
9 simp3r 1110 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → 𝑃 ∈ (𝔼‘𝑁))
10 simp2l 1107 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
11 simp2r 1108 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
12 simp3l 1109 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁))
13 simpr2 1088 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩ ∧ 𝐵 Btwn ⟨𝑃, 𝐶⟩)) → 𝐴 Btwn ⟨𝑃, 𝐵⟩)
14 simpr3 1089 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩ ∧ 𝐵 Btwn ⟨𝑃, 𝐶⟩)) → 𝐵 Btwn ⟨𝑃, 𝐶⟩)
158, 9, 10, 11, 12, 13, 14btwnexchand 32258 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩ ∧ 𝐵 Btwn ⟨𝑃, 𝐶⟩)) → 𝐴 Btwn ⟨𝑃, 𝐶⟩)
1615orcd 406 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩ ∧ 𝐵 Btwn ⟨𝑃, 𝐶⟩)) → (𝐴 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐴⟩))
177, 16sylan2br 492 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩) ∧ 𝐵 Btwn ⟨𝑃, 𝐶⟩)) → (𝐴 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐴⟩))
1817expr 642 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩)) → (𝐵 Btwn ⟨𝑃, 𝐶⟩ → (𝐴 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐴⟩)))
19 simprlr 820 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩) ∧ 𝐶 Btwn ⟨𝑃, 𝐵⟩)) → 𝐴 Btwn ⟨𝑃, 𝐵⟩)
20 simprr 811 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩) ∧ 𝐶 Btwn ⟨𝑃, 𝐵⟩)) → 𝐶 Btwn ⟨𝑃, 𝐵⟩)
21 btwnconn3 32335 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → ((𝐴 Btwn ⟨𝑃, 𝐵⟩ ∧ 𝐶 Btwn ⟨𝑃, 𝐵⟩) → (𝐴 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐴⟩)))
228, 9, 10, 12, 11, 21syl122anc 1375 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → ((𝐴 Btwn ⟨𝑃, 𝐵⟩ ∧ 𝐶 Btwn ⟨𝑃, 𝐵⟩) → (𝐴 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐴⟩)))
2322adantr 480 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩) ∧ 𝐶 Btwn ⟨𝑃, 𝐵⟩)) → ((𝐴 Btwn ⟨𝑃, 𝐵⟩ ∧ 𝐶 Btwn ⟨𝑃, 𝐵⟩) → (𝐴 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐴⟩)))
2419, 20, 23mp2and 715 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩) ∧ 𝐶 Btwn ⟨𝑃, 𝐵⟩)) → (𝐴 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐴⟩))
2524expr 642 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩)) → (𝐶 Btwn ⟨𝑃, 𝐵⟩ → (𝐴 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐴⟩)))
2618, 25jaod 394 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩)) → ((𝐵 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐵⟩) → (𝐴 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐴⟩)))
2726expr 642 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑃𝐵𝑃𝐶𝑃)) → (𝐴 Btwn ⟨𝑃, 𝐵⟩ → ((𝐵 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐵⟩) → (𝐴 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐴⟩))))
28 simpll2 1121 . . . . . . . . . . . . . 14 ((((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ 𝐵 Btwn ⟨𝑃, 𝐶⟩) → 𝐵𝑃)
2928adantl 481 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ 𝐵 Btwn ⟨𝑃, 𝐶⟩)) → 𝐵𝑃)
3029necomd 2878 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ 𝐵 Btwn ⟨𝑃, 𝐶⟩)) → 𝑃𝐵)
31 simprlr 820 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ 𝐵 Btwn ⟨𝑃, 𝐶⟩)) → 𝐵 Btwn ⟨𝑃, 𝐴⟩)
32 simprr 811 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ 𝐵 Btwn ⟨𝑃, 𝐶⟩)) → 𝐵 Btwn ⟨𝑃, 𝐶⟩)
33 btwnconn1 32333 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((𝑃𝐵𝐵 Btwn ⟨𝑃, 𝐴⟩ ∧ 𝐵 Btwn ⟨𝑃, 𝐶⟩) → (𝐴 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐴⟩)))
348, 9, 11, 10, 12, 33syl122anc 1375 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → ((𝑃𝐵𝐵 Btwn ⟨𝑃, 𝐴⟩ ∧ 𝐵 Btwn ⟨𝑃, 𝐶⟩) → (𝐴 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐴⟩)))
3534adantr 480 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ 𝐵 Btwn ⟨𝑃, 𝐶⟩)) → ((𝑃𝐵𝐵 Btwn ⟨𝑃, 𝐴⟩ ∧ 𝐵 Btwn ⟨𝑃, 𝐶⟩) → (𝐴 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐴⟩)))
3630, 31, 32, 35mp3and 1467 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ 𝐵 Btwn ⟨𝑃, 𝐶⟩)) → (𝐴 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐴⟩))
3736expr 642 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) → (𝐵 Btwn ⟨𝑃, 𝐶⟩ → (𝐴 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐴⟩)))
38 df-3an 1056 . . . . . . . . . . . 12 (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩ ∧ 𝐶 Btwn ⟨𝑃, 𝐵⟩) ↔ (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ 𝐶 Btwn ⟨𝑃, 𝐵⟩))
39 simpr3 1089 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩ ∧ 𝐶 Btwn ⟨𝑃, 𝐵⟩)) → 𝐶 Btwn ⟨𝑃, 𝐵⟩)
40 simpr2 1088 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩ ∧ 𝐶 Btwn ⟨𝑃, 𝐵⟩)) → 𝐵 Btwn ⟨𝑃, 𝐴⟩)
418, 9, 12, 11, 10, 39, 40btwnexchand 32258 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩ ∧ 𝐶 Btwn ⟨𝑃, 𝐵⟩)) → 𝐶 Btwn ⟨𝑃, 𝐴⟩)
4241olcd 407 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩ ∧ 𝐶 Btwn ⟨𝑃, 𝐵⟩)) → (𝐴 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐴⟩))
4338, 42sylan2br 492 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ 𝐶 Btwn ⟨𝑃, 𝐵⟩)) → (𝐴 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐴⟩))
4443expr 642 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) → (𝐶 Btwn ⟨𝑃, 𝐵⟩ → (𝐴 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐴⟩)))
4537, 44jaod 394 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) → ((𝐵 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐵⟩) → (𝐴 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐴⟩)))
4645expr 642 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑃𝐵𝑃𝐶𝑃)) → (𝐵 Btwn ⟨𝑃, 𝐴⟩ → ((𝐵 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐵⟩) → (𝐴 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐴⟩))))
4727, 46jaod 394 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑃𝐵𝑃𝐶𝑃)) → ((𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩) → ((𝐵 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐵⟩) → (𝐴 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐴⟩))))
4847imp32 448 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑃𝐵𝑃𝐶𝑃)) ∧ ((𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ (𝐵 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐵⟩))) → (𝐴 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐴⟩))
495, 6, 483jca 1261 . . . . 5 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑃𝐵𝑃𝐶𝑃)) ∧ ((𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ (𝐵 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐵⟩))) → (𝐴𝑃𝐶𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐴⟩)))
5049exp31 629 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → ((𝐴𝑃𝐵𝑃𝐶𝑃) → (((𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ (𝐵 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐵⟩)) → (𝐴𝑃𝐶𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐴⟩)))))
514, 50syl5 34 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → (((𝐴𝑃𝐵𝑃) ∧ (𝐵𝑃𝐶𝑃)) → (((𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ (𝐵 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐵⟩)) → (𝐴𝑃𝐶𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐴⟩)))))
5251impd 446 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → ((((𝐴𝑃𝐵𝑃) ∧ (𝐵𝑃𝐶𝑃)) ∧ ((𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ (𝐵 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐵⟩))) → (𝐴𝑃𝐶𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐴⟩))))
53 broutsideof2 32354 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf⟨𝐴, 𝐵⟩ ↔ (𝐴𝑃𝐵𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩))))
548, 9, 10, 11, 53syl13anc 1368 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf⟨𝐴, 𝐵⟩ ↔ (𝐴𝑃𝐵𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩))))
55 broutsideof2 32354 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf⟨𝐵, 𝐶⟩ ↔ (𝐵𝑃𝐶𝑃 ∧ (𝐵 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐵⟩))))
568, 9, 11, 12, 55syl13anc 1368 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf⟨𝐵, 𝐶⟩ ↔ (𝐵𝑃𝐶𝑃 ∧ (𝐵 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐵⟩))))
5754, 56anbi12d 747 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → ((𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ 𝑃OutsideOf⟨𝐵, 𝐶⟩) ↔ ((𝐴𝑃𝐵𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) ∧ (𝐵𝑃𝐶𝑃 ∧ (𝐵 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐵⟩)))))
58 df-3an 1056 . . . . 5 ((𝐴𝑃𝐵𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) ↔ ((𝐴𝑃𝐵𝑃) ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)))
59 df-3an 1056 . . . . 5 ((𝐵𝑃𝐶𝑃 ∧ (𝐵 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐵⟩)) ↔ ((𝐵𝑃𝐶𝑃) ∧ (𝐵 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐵⟩)))
6058, 59anbi12i 733 . . . 4 (((𝐴𝑃𝐵𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) ∧ (𝐵𝑃𝐶𝑃 ∧ (𝐵 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐵⟩))) ↔ (((𝐴𝑃𝐵𝑃) ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) ∧ ((𝐵𝑃𝐶𝑃) ∧ (𝐵 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐵⟩))))
61 an4 882 . . . 4 ((((𝐴𝑃𝐵𝑃) ∧ (𝐵𝑃𝐶𝑃)) ∧ ((𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ (𝐵 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐵⟩))) ↔ (((𝐴𝑃𝐵𝑃) ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) ∧ ((𝐵𝑃𝐶𝑃) ∧ (𝐵 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐵⟩))))
6260, 61bitr4i 267 . . 3 (((𝐴𝑃𝐵𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) ∧ (𝐵𝑃𝐶𝑃 ∧ (𝐵 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐵⟩))) ↔ (((𝐴𝑃𝐵𝑃) ∧ (𝐵𝑃𝐶𝑃)) ∧ ((𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ (𝐵 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐵⟩))))
6357, 62syl6bb 276 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → ((𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ 𝑃OutsideOf⟨𝐵, 𝐶⟩) ↔ (((𝐴𝑃𝐵𝑃) ∧ (𝐵𝑃𝐶𝑃)) ∧ ((𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ (𝐵 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐵⟩)))))
64 broutsideof2 32354 . . 3 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf⟨𝐴, 𝐶⟩ ↔ (𝐴𝑃𝐶𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐴⟩))))
658, 9, 10, 12, 64syl13anc 1368 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf⟨𝐴, 𝐶⟩ ↔ (𝐴𝑃𝐶𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐴⟩))))
6652, 63, 653imtr4d 283 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → ((𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ 𝑃OutsideOf⟨𝐵, 𝐶⟩) → 𝑃OutsideOf⟨𝐴, 𝐶⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 382  wa 383  w3a 1054  wcel 2030  wne 2823  cop 4216   class class class wbr 4685  cfv 5926  cn 11058  𝔼cee 25813   Btwn cbtwn 25814  OutsideOfcoutsideof 32351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-sum 14461  df-ee 25816  df-btwn 25817  df-cgr 25818  df-ofs 32215  df-colinear 32271  df-ifs 32272  df-cgr3 32273  df-fs 32274  df-outsideof 32352
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator