Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  outsideofeu Structured version   Visualization version   GIF version

Theorem outsideofeu 32576
Description: Given a non-degenerate ray, there is a unique point congruent to the segment 𝐵𝐶 lying on the ray 𝐴𝑅. Theorem 6.11 of [Schwabhauser] p. 44. (Contributed by Scott Fenton, 23-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
outsideofeu ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((𝑅𝐴𝐵𝐶) → ∃!𝑥 ∈ (𝔼‘𝑁)(𝐴OutsideOf⟨𝑥, 𝑅⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝑁   𝑥,𝑅

Proof of Theorem outsideofeu
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 segcon2 32550 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ∃𝑥 ∈ (𝔼‘𝑁)((𝑅 Btwn ⟨𝐴, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝐴, 𝑅⟩) ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩))
21adantr 473 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑅𝐴𝐵𝐶)) → ∃𝑥 ∈ (𝔼‘𝑁)((𝑅 Btwn ⟨𝐴, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝐴, 𝑅⟩) ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩))
3 simpl1 1225 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ)
4 simpl2l 1280 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
5 simpr 480 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑥 ∈ (𝔼‘𝑁))
6 simpl2r 1282 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑅 ∈ (𝔼‘𝑁))
7 broutsideof2 32567 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → (𝐴OutsideOf⟨𝑥, 𝑅⟩ ↔ (𝑥𝐴𝑅𝐴 ∧ (𝑥 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑥⟩))))
83, 4, 5, 6, 7syl13anc 1476 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝐴OutsideOf⟨𝑥, 𝑅⟩ ↔ (𝑥𝐴𝑅𝐴 ∧ (𝑥 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑥⟩))))
98adantr 473 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ ((𝑅𝐴𝐵𝐶) ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩)) → (𝐴OutsideOf⟨𝑥, 𝑅⟩ ↔ (𝑥𝐴𝑅𝐴 ∧ (𝑥 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑥⟩))))
10 simp3 1130 . . . . . . . . . . 11 ((𝑥𝐴𝑅𝐴 ∧ (𝑥 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑥⟩)) → (𝑥 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑥⟩))
11 simpllr 814 . . . . . . . . . . . . . . . 16 ((((𝑅𝐴𝐵𝐶) ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) ∧ (𝑥 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑥⟩)) → 𝐵𝐶)
1211adantl 474 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (((𝑅𝐴𝐵𝐶) ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) ∧ (𝑥 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑥⟩))) → 𝐵𝐶)
13 simprlr 819 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (((𝑅𝐴𝐵𝐶) ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) ∧ (𝑥 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑥⟩))) → ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩)
14 simp2l 1239 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
1514anim1i 594 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁)))
16 simpl3 1229 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)))
17 cgrdegen 32449 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩ → (𝐴 = 𝑥𝐵 = 𝐶)))
183, 15, 16, 17syl3anc 1474 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩ → (𝐴 = 𝑥𝐵 = 𝐶)))
1918adantr 473 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (((𝑅𝐴𝐵𝐶) ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) ∧ (𝑥 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑥⟩))) → (⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩ → (𝐴 = 𝑥𝐵 = 𝐶)))
2013, 19mpd 15 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (((𝑅𝐴𝐵𝐶) ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) ∧ (𝑥 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑥⟩))) → (𝐴 = 𝑥𝐵 = 𝐶))
2120necon3bid 2985 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (((𝑅𝐴𝐵𝐶) ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) ∧ (𝑥 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑥⟩))) → (𝐴𝑥𝐵𝐶))
2212, 21mpbird 247 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (((𝑅𝐴𝐵𝐶) ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) ∧ (𝑥 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑥⟩))) → 𝐴𝑥)
2322necomd 2996 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (((𝑅𝐴𝐵𝐶) ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) ∧ (𝑥 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑥⟩))) → 𝑥𝐴)
24 simplll 812 . . . . . . . . . . . . . 14 ((((𝑅𝐴𝐵𝐶) ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) ∧ (𝑥 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑥⟩)) → 𝑅𝐴)
2524adantl 474 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (((𝑅𝐴𝐵𝐶) ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) ∧ (𝑥 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑥⟩))) → 𝑅𝐴)
26 simprr 810 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (((𝑅𝐴𝐵𝐶) ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) ∧ (𝑥 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑥⟩))) → (𝑥 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑥⟩))
2723, 25, 263jca 1120 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (((𝑅𝐴𝐵𝐶) ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) ∧ (𝑥 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑥⟩))) → (𝑥𝐴𝑅𝐴 ∧ (𝑥 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑥⟩)))
2827expr 641 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ ((𝑅𝐴𝐵𝐶) ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩)) → ((𝑥 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑥⟩) → (𝑥𝐴𝑅𝐴 ∧ (𝑥 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑥⟩))))
2910, 28impbid2 216 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ ((𝑅𝐴𝐵𝐶) ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩)) → ((𝑥𝐴𝑅𝐴 ∧ (𝑥 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑥⟩)) ↔ (𝑥 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑥⟩)))
309, 29bitrd 268 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ ((𝑅𝐴𝐵𝐶) ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩)) → (𝐴OutsideOf⟨𝑥, 𝑅⟩ ↔ (𝑥 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑥⟩)))
31 orcom 401 . . . . . . . . 9 ((𝑥 Btwn ⟨𝐴, 𝑅⟩ ∨ 𝑅 Btwn ⟨𝐴, 𝑥⟩) ↔ (𝑅 Btwn ⟨𝐴, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝐴, 𝑅⟩))
3230, 31syl6bb 276 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ ((𝑅𝐴𝐵𝐶) ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩)) → (𝐴OutsideOf⟨𝑥, 𝑅⟩ ↔ (𝑅 Btwn ⟨𝐴, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝐴, 𝑅⟩)))
3332expr 641 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑅𝐴𝐵𝐶)) → (⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩ → (𝐴OutsideOf⟨𝑥, 𝑅⟩ ↔ (𝑅 Btwn ⟨𝐴, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝐴, 𝑅⟩))))
3433pm5.32rd 672 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑅𝐴𝐵𝐶)) → ((𝐴OutsideOf⟨𝑥, 𝑅⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) ↔ ((𝑅 Btwn ⟨𝐴, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝐴, 𝑅⟩) ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩)))
3534an32s 878 . . . . 5 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑅𝐴𝐵𝐶)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝐴OutsideOf⟨𝑥, 𝑅⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) ↔ ((𝑅 Btwn ⟨𝐴, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝐴, 𝑅⟩) ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩)))
3635rexbidva 3195 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑅𝐴𝐵𝐶)) → (∃𝑥 ∈ (𝔼‘𝑁)(𝐴OutsideOf⟨𝑥, 𝑅⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) ↔ ∃𝑥 ∈ (𝔼‘𝑁)((𝑅 Btwn ⟨𝐴, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝐴, 𝑅⟩) ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩)))
372, 36mpbird 247 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑅𝐴𝐵𝐶)) → ∃𝑥 ∈ (𝔼‘𝑁)(𝐴OutsideOf⟨𝑥, 𝑅⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩))
38 simpl1 1225 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
39 simpl2l 1280 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
40 simpl2r 1282 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → 𝑅 ∈ (𝔼‘𝑁))
41 simpl3l 1284 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
4239, 40, 413jca 1120 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)))
43 simpl3r 1286 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁))
44 simprl 808 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → 𝑥 ∈ (𝔼‘𝑁))
45 simprr 810 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → 𝑦 ∈ (𝔼‘𝑁))
4643, 44, 453jca 1120 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁)))
4738, 42, 463jca 1120 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → (𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))))
48 simpr 480 . . . . . . 7 (((𝑅𝐴𝐵𝐶) ∧ ((𝐴OutsideOf⟨𝑥, 𝑅⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) ∧ (𝐴OutsideOf⟨𝑦, 𝑅⟩ ∧ ⟨𝐴, 𝑦⟩Cgr⟨𝐵, 𝐶⟩))) → ((𝐴OutsideOf⟨𝑥, 𝑅⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) ∧ (𝐴OutsideOf⟨𝑦, 𝑅⟩ ∧ ⟨𝐴, 𝑦⟩Cgr⟨𝐵, 𝐶⟩)))
49 outsideofeq 32575 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → (((𝐴OutsideOf⟨𝑥, 𝑅⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) ∧ (𝐴OutsideOf⟨𝑦, 𝑅⟩ ∧ ⟨𝐴, 𝑦⟩Cgr⟨𝐵, 𝐶⟩)) → 𝑥 = 𝑦))
5049imp 443 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) ∧ ((𝐴OutsideOf⟨𝑥, 𝑅⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) ∧ (𝐴OutsideOf⟨𝑦, 𝑅⟩ ∧ ⟨𝐴, 𝑦⟩Cgr⟨𝐵, 𝐶⟩))) → 𝑥 = 𝑦)
5147, 48, 50syl2an 496 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) ∧ ((𝑅𝐴𝐵𝐶) ∧ ((𝐴OutsideOf⟨𝑥, 𝑅⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) ∧ (𝐴OutsideOf⟨𝑦, 𝑅⟩ ∧ ⟨𝐴, 𝑦⟩Cgr⟨𝐵, 𝐶⟩)))) → 𝑥 = 𝑦)
5251an4s 901 . . . . 5 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑅𝐴𝐵𝐶)) ∧ ((𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ ((𝐴OutsideOf⟨𝑥, 𝑅⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) ∧ (𝐴OutsideOf⟨𝑦, 𝑅⟩ ∧ ⟨𝐴, 𝑦⟩Cgr⟨𝐵, 𝐶⟩)))) → 𝑥 = 𝑦)
5352exp32 631 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑅𝐴𝐵𝐶)) → ((𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (((𝐴OutsideOf⟨𝑥, 𝑅⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) ∧ (𝐴OutsideOf⟨𝑦, 𝑅⟩ ∧ ⟨𝐴, 𝑦⟩Cgr⟨𝐵, 𝐶⟩)) → 𝑥 = 𝑦)))
5453ralrimivv 3117 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑅𝐴𝐵𝐶)) → ∀𝑥 ∈ (𝔼‘𝑁)∀𝑦 ∈ (𝔼‘𝑁)(((𝐴OutsideOf⟨𝑥, 𝑅⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) ∧ (𝐴OutsideOf⟨𝑦, 𝑅⟩ ∧ ⟨𝐴, 𝑦⟩Cgr⟨𝐵, 𝐶⟩)) → 𝑥 = 𝑦))
55 opeq1 4536 . . . . . 6 (𝑥 = 𝑦 → ⟨𝑥, 𝑅⟩ = ⟨𝑦, 𝑅⟩)
5655breq2d 4795 . . . . 5 (𝑥 = 𝑦 → (𝐴OutsideOf⟨𝑥, 𝑅⟩ ↔ 𝐴OutsideOf⟨𝑦, 𝑅⟩))
57 opeq2 4537 . . . . . 6 (𝑥 = 𝑦 → ⟨𝐴, 𝑥⟩ = ⟨𝐴, 𝑦⟩)
5857breq1d 4793 . . . . 5 (𝑥 = 𝑦 → (⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩ ↔ ⟨𝐴, 𝑦⟩Cgr⟨𝐵, 𝐶⟩))
5956, 58anbi12d 746 . . . 4 (𝑥 = 𝑦 → ((𝐴OutsideOf⟨𝑥, 𝑅⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) ↔ (𝐴OutsideOf⟨𝑦, 𝑅⟩ ∧ ⟨𝐴, 𝑦⟩Cgr⟨𝐵, 𝐶⟩)))
6059reu4 3549 . . 3 (∃!𝑥 ∈ (𝔼‘𝑁)(𝐴OutsideOf⟨𝑥, 𝑅⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) ↔ (∃𝑥 ∈ (𝔼‘𝑁)(𝐴OutsideOf⟨𝑥, 𝑅⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) ∧ ∀𝑥 ∈ (𝔼‘𝑁)∀𝑦 ∈ (𝔼‘𝑁)(((𝐴OutsideOf⟨𝑥, 𝑅⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) ∧ (𝐴OutsideOf⟨𝑦, 𝑅⟩ ∧ ⟨𝐴, 𝑦⟩Cgr⟨𝐵, 𝐶⟩)) → 𝑥 = 𝑦)))
6137, 54, 60sylanbrc 698 . 2 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑅𝐴𝐵𝐶)) → ∃!𝑥 ∈ (𝔼‘𝑁)(𝐴OutsideOf⟨𝑥, 𝑅⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩))
6261ex 448 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((𝑅𝐴𝐵𝐶) → ∃!𝑥 ∈ (𝔼‘𝑁)(𝐴OutsideOf⟨𝑥, 𝑅⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐵, 𝐶⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 382  wa 383  w3a 1069   = wceq 1629  wcel 2143  wne 2941  wral 3059  wrex 3060  ∃!wreu 3061  cop 4319   class class class wbr 4783  cfv 6030  cn 11220  𝔼cee 25995   Btwn cbtwn 25996  Cgrccgr 25997  OutsideOfcoutsideof 32564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1868  ax-4 1883  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2145  ax-9 2152  ax-10 2172  ax-11 2188  ax-12 2201  ax-13 2406  ax-ext 2749  ax-rep 4901  ax-sep 4911  ax-nul 4919  ax-pow 4970  ax-pr 5033  ax-un 7094  ax-inf2 8700  ax-cnex 10192  ax-resscn 10193  ax-1cn 10194  ax-icn 10195  ax-addcl 10196  ax-addrcl 10197  ax-mulcl 10198  ax-mulrcl 10199  ax-mulcom 10200  ax-addass 10201  ax-mulass 10202  ax-distr 10203  ax-i2m1 10204  ax-1ne0 10205  ax-1rid 10206  ax-rnegex 10207  ax-rrecex 10208  ax-cnre 10209  ax-pre-lttri 10210  ax-pre-lttrn 10211  ax-pre-ltadd 10212  ax-pre-mulgt0 10213  ax-pre-sup 10214
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1070  df-3an 1071  df-tru 1632  df-fal 1635  df-ex 1851  df-nf 1856  df-sb 2048  df-eu 2620  df-mo 2621  df-clab 2756  df-cleq 2762  df-clel 2765  df-nfc 2900  df-ne 2942  df-nel 3045  df-ral 3064  df-rex 3065  df-reu 3066  df-rmo 3067  df-rab 3068  df-v 3350  df-sbc 3585  df-csb 3680  df-dif 3723  df-un 3725  df-in 3727  df-ss 3734  df-pss 3736  df-nul 4061  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4572  df-int 4609  df-iun 4653  df-br 4784  df-opab 4844  df-mpt 4861  df-tr 4884  df-id 5156  df-eprel 5161  df-po 5169  df-so 5170  df-fr 5207  df-se 5208  df-we 5209  df-xp 5254  df-rel 5255  df-cnv 5256  df-co 5257  df-dm 5258  df-rn 5259  df-res 5260  df-ima 5261  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-isom 6039  df-riota 6752  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-om 7211  df-1st 7313  df-2nd 7314  df-wrecs 7557  df-recs 7619  df-rdg 7657  df-1o 7711  df-oadd 7715  df-er 7894  df-map 8009  df-en 8108  df-dom 8109  df-sdom 8110  df-fin 8111  df-sup 8502  df-oi 8569  df-card 8963  df-pnf 10276  df-mnf 10277  df-xr 10278  df-ltxr 10279  df-le 10280  df-sub 10468  df-neg 10469  df-div 10885  df-nn 11221  df-2 11279  df-3 11280  df-n0 11493  df-z 11578  df-uz 11888  df-rp 12035  df-ico 12385  df-icc 12386  df-fz 12533  df-fzo 12673  df-seq 13009  df-exp 13068  df-hash 13325  df-cj 14050  df-re 14051  df-im 14052  df-sqrt 14186  df-abs 14187  df-clim 14430  df-sum 14628  df-ee 25998  df-btwn 25999  df-cgr 26000  df-ofs 32428  df-colinear 32484  df-ifs 32485  df-cgr3 32486  df-fs 32487  df-outsideof 32565
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator