MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  outpasch Structured version   Visualization version   GIF version

Theorem outpasch 25838
Description: Axiom of Pasch, outer form. This was proven by Gupta from other axioms and is therefore presented as Theorem 9.6 in [Schwabhauser] p. 70. (Contributed by Thierry Arnoux, 16-Aug-2020.)
Hypotheses
Ref Expression
outpasch.p 𝑃 = (Base‘𝐺)
outpasch.i 𝐼 = (Itv‘𝐺)
outpasch.l 𝐿 = (LineG‘𝐺)
outpasch.g (𝜑𝐺 ∈ TarskiG)
outpasch.a (𝜑𝐴𝑃)
outpasch.b (𝜑𝐵𝑃)
outpasch.c (𝜑𝐶𝑃)
outpasch.r (𝜑𝑅𝑃)
outpasch.q (𝜑𝑄𝑃)
outpasch.1 (𝜑𝐶 ∈ (𝐴𝐼𝑅))
outpasch.2 (𝜑𝑄 ∈ (𝐵𝐼𝐶))
Assertion
Ref Expression
outpasch (𝜑 → ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑄 ∈ (𝑅𝐼𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐺   𝑥,𝐼   𝑥,𝐿   𝑥,𝑃   𝑥,𝑄   𝑥,𝑅   𝜑,𝑥

Proof of Theorem outpasch
Dummy variables 𝑡 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 outpasch.a . . . . . 6 (𝜑𝐴𝑃)
21adantr 472 . . . . 5 ((𝜑𝑄 ∈ (𝑅𝐼𝐶)) → 𝐴𝑃)
3 simpr 479 . . . . . . 7 (((𝜑𝑄 ∈ (𝑅𝐼𝐶)) ∧ 𝑥 = 𝐴) → 𝑥 = 𝐴)
43eleq1d 2816 . . . . . 6 (((𝜑𝑄 ∈ (𝑅𝐼𝐶)) ∧ 𝑥 = 𝐴) → (𝑥 ∈ (𝐴𝐼𝐵) ↔ 𝐴 ∈ (𝐴𝐼𝐵)))
53oveq2d 6821 . . . . . . 7 (((𝜑𝑄 ∈ (𝑅𝐼𝐶)) ∧ 𝑥 = 𝐴) → (𝑅𝐼𝑥) = (𝑅𝐼𝐴))
65eleq2d 2817 . . . . . 6 (((𝜑𝑄 ∈ (𝑅𝐼𝐶)) ∧ 𝑥 = 𝐴) → (𝑄 ∈ (𝑅𝐼𝑥) ↔ 𝑄 ∈ (𝑅𝐼𝐴)))
74, 6anbi12d 749 . . . . 5 (((𝜑𝑄 ∈ (𝑅𝐼𝐶)) ∧ 𝑥 = 𝐴) → ((𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑄 ∈ (𝑅𝐼𝑥)) ↔ (𝐴 ∈ (𝐴𝐼𝐵) ∧ 𝑄 ∈ (𝑅𝐼𝐴))))
8 outpasch.p . . . . . . . 8 𝑃 = (Base‘𝐺)
9 eqid 2752 . . . . . . . 8 (dist‘𝐺) = (dist‘𝐺)
10 outpasch.i . . . . . . . 8 𝐼 = (Itv‘𝐺)
11 outpasch.g . . . . . . . 8 (𝜑𝐺 ∈ TarskiG)
12 outpasch.b . . . . . . . 8 (𝜑𝐵𝑃)
138, 9, 10, 11, 1, 12tgbtwntriv1 25577 . . . . . . 7 (𝜑𝐴 ∈ (𝐴𝐼𝐵))
1413adantr 472 . . . . . 6 ((𝜑𝑄 ∈ (𝑅𝐼𝐶)) → 𝐴 ∈ (𝐴𝐼𝐵))
1511adantr 472 . . . . . . 7 ((𝜑𝑄 ∈ (𝑅𝐼𝐶)) → 𝐺 ∈ TarskiG)
16 outpasch.r . . . . . . . 8 (𝜑𝑅𝑃)
1716adantr 472 . . . . . . 7 ((𝜑𝑄 ∈ (𝑅𝐼𝐶)) → 𝑅𝑃)
18 outpasch.q . . . . . . . 8 (𝜑𝑄𝑃)
1918adantr 472 . . . . . . 7 ((𝜑𝑄 ∈ (𝑅𝐼𝐶)) → 𝑄𝑃)
20 outpasch.c . . . . . . . 8 (𝜑𝐶𝑃)
2120adantr 472 . . . . . . 7 ((𝜑𝑄 ∈ (𝑅𝐼𝐶)) → 𝐶𝑃)
22 simpr 479 . . . . . . 7 ((𝜑𝑄 ∈ (𝑅𝐼𝐶)) → 𝑄 ∈ (𝑅𝐼𝐶))
23 outpasch.1 . . . . . . . . 9 (𝜑𝐶 ∈ (𝐴𝐼𝑅))
248, 9, 10, 11, 1, 20, 16, 23tgbtwncom 25574 . . . . . . . 8 (𝜑𝐶 ∈ (𝑅𝐼𝐴))
2524adantr 472 . . . . . . 7 ((𝜑𝑄 ∈ (𝑅𝐼𝐶)) → 𝐶 ∈ (𝑅𝐼𝐴))
268, 9, 10, 15, 17, 19, 21, 2, 22, 25tgbtwnexch 25584 . . . . . 6 ((𝜑𝑄 ∈ (𝑅𝐼𝐶)) → 𝑄 ∈ (𝑅𝐼𝐴))
2714, 26jca 555 . . . . 5 ((𝜑𝑄 ∈ (𝑅𝐼𝐶)) → (𝐴 ∈ (𝐴𝐼𝐵) ∧ 𝑄 ∈ (𝑅𝐼𝐴)))
282, 7, 27rspcedvd 3448 . . . 4 ((𝜑𝑄 ∈ (𝑅𝐼𝐶)) → ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑄 ∈ (𝑅𝐼𝑥)))
2928adantlr 753 . . 3 (((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ 𝑄 ∈ (𝑅𝐼𝐶)) → ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑄 ∈ (𝑅𝐼𝑥)))
3012ad2antrr 764 . . . 4 (((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝑄 ∈ (𝑅𝐼𝐶)) → 𝐵𝑃)
31 eleq1 2819 . . . . . 6 (𝑥 = 𝐵 → (𝑥 ∈ (𝐴𝐼𝐵) ↔ 𝐵 ∈ (𝐴𝐼𝐵)))
32 eqidd 2753 . . . . . . 7 (𝑥 = 𝐵𝑄 = 𝑄)
33 oveq2 6813 . . . . . . 7 (𝑥 = 𝐵 → (𝑅𝐼𝑥) = (𝑅𝐼𝐵))
3432, 33eleq12d 2825 . . . . . 6 (𝑥 = 𝐵 → (𝑄 ∈ (𝑅𝐼𝑥) ↔ 𝑄 ∈ (𝑅𝐼𝐵)))
3531, 34anbi12d 749 . . . . 5 (𝑥 = 𝐵 → ((𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑄 ∈ (𝑅𝐼𝑥)) ↔ (𝐵 ∈ (𝐴𝐼𝐵) ∧ 𝑄 ∈ (𝑅𝐼𝐵))))
3635adantl 473 . . . 4 ((((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝑄 ∈ (𝑅𝐼𝐶)) ∧ 𝑥 = 𝐵) → ((𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑄 ∈ (𝑅𝐼𝑥)) ↔ (𝐵 ∈ (𝐴𝐼𝐵) ∧ 𝑄 ∈ (𝑅𝐼𝐵))))
378, 9, 10, 11, 1, 12tgbtwntriv2 25573 . . . . . 6 (𝜑𝐵 ∈ (𝐴𝐼𝐵))
3837ad2antrr 764 . . . . 5 (((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝑄 ∈ (𝑅𝐼𝐶)) → 𝐵 ∈ (𝐴𝐼𝐵))
3911ad2antrr 764 . . . . . . . 8 (((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝑄 ∈ (𝑅𝐼𝐶)) → 𝐺 ∈ TarskiG)
4039adantr 472 . . . . . . 7 ((((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝑄 ∈ (𝑅𝐼𝐶)) ∧ 𝑅 ∈ (𝑄𝐼𝐶)) → 𝐺 ∈ TarskiG)
4120ad3antrrr 768 . . . . . . 7 ((((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝑄 ∈ (𝑅𝐼𝐶)) ∧ 𝑅 ∈ (𝑄𝐼𝐶)) → 𝐶𝑃)
4216ad3antrrr 768 . . . . . . 7 ((((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝑄 ∈ (𝑅𝐼𝐶)) ∧ 𝑅 ∈ (𝑄𝐼𝐶)) → 𝑅𝑃)
4318ad3antrrr 768 . . . . . . 7 ((((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝑄 ∈ (𝑅𝐼𝐶)) ∧ 𝑅 ∈ (𝑄𝐼𝐶)) → 𝑄𝑃)
4430adantr 472 . . . . . . 7 ((((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝑄 ∈ (𝑅𝐼𝐶)) ∧ 𝑅 ∈ (𝑄𝐼𝐶)) → 𝐵𝑃)
45 simpr 479 . . . . . . . 8 ((((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝑄 ∈ (𝑅𝐼𝐶)) ∧ 𝑅 ∈ (𝑄𝐼𝐶)) → 𝑅 ∈ (𝑄𝐼𝐶))
468, 9, 10, 40, 43, 42, 41, 45tgbtwncom 25574 . . . . . . 7 ((((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝑄 ∈ (𝑅𝐼𝐶)) ∧ 𝑅 ∈ (𝑄𝐼𝐶)) → 𝑅 ∈ (𝐶𝐼𝑄))
47 outpasch.2 . . . . . . . . 9 (𝜑𝑄 ∈ (𝐵𝐼𝐶))
488, 9, 10, 11, 12, 18, 20, 47tgbtwncom 25574 . . . . . . . 8 (𝜑𝑄 ∈ (𝐶𝐼𝐵))
4948ad3antrrr 768 . . . . . . 7 ((((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝑄 ∈ (𝑅𝐼𝐶)) ∧ 𝑅 ∈ (𝑄𝐼𝐶)) → 𝑄 ∈ (𝐶𝐼𝐵))
508, 9, 10, 40, 41, 42, 43, 44, 46, 49tgbtwnexch3 25580 . . . . . 6 ((((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝑄 ∈ (𝑅𝐼𝐶)) ∧ 𝑅 ∈ (𝑄𝐼𝐶)) → 𝑄 ∈ (𝑅𝐼𝐵))
5139adantr 472 . . . . . . 7 ((((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝑄 ∈ (𝑅𝐼𝐶)) ∧ 𝐶 ∈ (𝑄𝐼𝑅)) → 𝐺 ∈ TarskiG)
5230adantr 472 . . . . . . 7 ((((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝑄 ∈ (𝑅𝐼𝐶)) ∧ 𝐶 ∈ (𝑄𝐼𝑅)) → 𝐵𝑃)
5318ad3antrrr 768 . . . . . . 7 ((((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝑄 ∈ (𝑅𝐼𝐶)) ∧ 𝐶 ∈ (𝑄𝐼𝑅)) → 𝑄𝑃)
5416ad3antrrr 768 . . . . . . 7 ((((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝑄 ∈ (𝑅𝐼𝐶)) ∧ 𝐶 ∈ (𝑄𝐼𝑅)) → 𝑅𝑃)
5520ad3antrrr 768 . . . . . . . 8 ((((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝑄 ∈ (𝑅𝐼𝐶)) ∧ 𝐶 ∈ (𝑄𝐼𝑅)) → 𝐶𝑃)
56 simpr 479 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝑄 ∈ (𝑅𝐼𝐶)) ∧ 𝐶 ∈ (𝑄𝐼𝑅)) ∧ 𝑄 = 𝐶) → 𝑄 = 𝐶)
578, 9, 10, 11, 16, 20tgbtwntriv2 25573 . . . . . . . . . . . 12 (𝜑𝐶 ∈ (𝑅𝐼𝐶))
5857ad4antr 771 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝑄 ∈ (𝑅𝐼𝐶)) ∧ 𝐶 ∈ (𝑄𝐼𝑅)) ∧ 𝑄 = 𝐶) → 𝐶 ∈ (𝑅𝐼𝐶))
5956, 58eqeltrd 2831 . . . . . . . . . 10 (((((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝑄 ∈ (𝑅𝐼𝐶)) ∧ 𝐶 ∈ (𝑄𝐼𝑅)) ∧ 𝑄 = 𝐶) → 𝑄 ∈ (𝑅𝐼𝐶))
60 simpllr 817 . . . . . . . . . 10 (((((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝑄 ∈ (𝑅𝐼𝐶)) ∧ 𝐶 ∈ (𝑄𝐼𝑅)) ∧ 𝑄 = 𝐶) → ¬ 𝑄 ∈ (𝑅𝐼𝐶))
6159, 60pm2.65da 601 . . . . . . . . 9 ((((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝑄 ∈ (𝑅𝐼𝐶)) ∧ 𝐶 ∈ (𝑄𝐼𝑅)) → ¬ 𝑄 = 𝐶)
6261neqned 2931 . . . . . . . 8 ((((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝑄 ∈ (𝑅𝐼𝐶)) ∧ 𝐶 ∈ (𝑄𝐼𝑅)) → 𝑄𝐶)
6347ad3antrrr 768 . . . . . . . 8 ((((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝑄 ∈ (𝑅𝐼𝐶)) ∧ 𝐶 ∈ (𝑄𝐼𝑅)) → 𝑄 ∈ (𝐵𝐼𝐶))
64 simpr 479 . . . . . . . 8 ((((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝑄 ∈ (𝑅𝐼𝐶)) ∧ 𝐶 ∈ (𝑄𝐼𝑅)) → 𝐶 ∈ (𝑄𝐼𝑅))
658, 9, 10, 51, 52, 53, 55, 54, 62, 63, 64tgbtwnouttr 25583 . . . . . . 7 ((((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝑄 ∈ (𝑅𝐼𝐶)) ∧ 𝐶 ∈ (𝑄𝐼𝑅)) → 𝑄 ∈ (𝐵𝐼𝑅))
668, 9, 10, 51, 52, 53, 54, 65tgbtwncom 25574 . . . . . 6 ((((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝑄 ∈ (𝑅𝐼𝐶)) ∧ 𝐶 ∈ (𝑄𝐼𝑅)) → 𝑄 ∈ (𝑅𝐼𝐵))
67 outpasch.l . . . . . . . . . . 11 𝐿 = (LineG‘𝐺)
688, 67, 10, 11, 18, 20, 16tgcolg 25640 . . . . . . . . . 10 (𝜑 → ((𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶) ↔ (𝑅 ∈ (𝑄𝐼𝐶) ∨ 𝑄 ∈ (𝑅𝐼𝐶) ∨ 𝐶 ∈ (𝑄𝐼𝑅))))
6968biimpa 502 . . . . . . . . 9 ((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) → (𝑅 ∈ (𝑄𝐼𝐶) ∨ 𝑄 ∈ (𝑅𝐼𝐶) ∨ 𝐶 ∈ (𝑄𝐼𝑅)))
70 3orcoma 1078 . . . . . . . . . 10 ((𝑄 ∈ (𝑅𝐼𝐶) ∨ 𝑅 ∈ (𝑄𝐼𝐶) ∨ 𝐶 ∈ (𝑄𝐼𝑅)) ↔ (𝑅 ∈ (𝑄𝐼𝐶) ∨ 𝑄 ∈ (𝑅𝐼𝐶) ∨ 𝐶 ∈ (𝑄𝐼𝑅)))
71 3orass 1075 . . . . . . . . . 10 ((𝑄 ∈ (𝑅𝐼𝐶) ∨ 𝑅 ∈ (𝑄𝐼𝐶) ∨ 𝐶 ∈ (𝑄𝐼𝑅)) ↔ (𝑄 ∈ (𝑅𝐼𝐶) ∨ (𝑅 ∈ (𝑄𝐼𝐶) ∨ 𝐶 ∈ (𝑄𝐼𝑅))))
7270, 71bitr3i 266 . . . . . . . . 9 ((𝑅 ∈ (𝑄𝐼𝐶) ∨ 𝑄 ∈ (𝑅𝐼𝐶) ∨ 𝐶 ∈ (𝑄𝐼𝑅)) ↔ (𝑄 ∈ (𝑅𝐼𝐶) ∨ (𝑅 ∈ (𝑄𝐼𝐶) ∨ 𝐶 ∈ (𝑄𝐼𝑅))))
7369, 72sylib 208 . . . . . . . 8 ((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) → (𝑄 ∈ (𝑅𝐼𝐶) ∨ (𝑅 ∈ (𝑄𝐼𝐶) ∨ 𝐶 ∈ (𝑄𝐼𝑅))))
7473ord 391 . . . . . . 7 ((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) → (¬ 𝑄 ∈ (𝑅𝐼𝐶) → (𝑅 ∈ (𝑄𝐼𝐶) ∨ 𝐶 ∈ (𝑄𝐼𝑅))))
7574imp 444 . . . . . 6 (((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝑄 ∈ (𝑅𝐼𝐶)) → (𝑅 ∈ (𝑄𝐼𝐶) ∨ 𝐶 ∈ (𝑄𝐼𝑅)))
7650, 66, 75mpjaodan 862 . . . . 5 (((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝑄 ∈ (𝑅𝐼𝐶)) → 𝑄 ∈ (𝑅𝐼𝐵))
7738, 76jca 555 . . . 4 (((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝑄 ∈ (𝑅𝐼𝐶)) → (𝐵 ∈ (𝐴𝐼𝐵) ∧ 𝑄 ∈ (𝑅𝐼𝐵)))
7830, 36, 77rspcedvd 3448 . . 3 (((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝑄 ∈ (𝑅𝐼𝐶)) → ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑄 ∈ (𝑅𝐼𝑥)))
7929, 78pm2.61dan 867 . 2 ((𝜑 ∧ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) → ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑄 ∈ (𝑅𝐼𝑥)))
8012ad2antrr 764 . . . 4 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ 𝐵 ∈ (𝑅𝐿𝑄)) → 𝐵𝑃)
8135adantl 473 . . . 4 ((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 = 𝐵) → ((𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑄 ∈ (𝑅𝐼𝑥)) ↔ (𝐵 ∈ (𝐴𝐼𝐵) ∧ 𝑄 ∈ (𝑅𝐼𝐵))))
8237ad2antrr 764 . . . . 5 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ 𝐵 ∈ (𝑅𝐿𝑄)) → 𝐵 ∈ (𝐴𝐼𝐵))
8311ad2antrr 764 . . . . . . 7 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ 𝐵 ∈ (𝑅𝐿𝑄)) → 𝐺 ∈ TarskiG)
8416ad2antrr 764 . . . . . . 7 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ 𝐵 ∈ (𝑅𝐿𝑄)) → 𝑅𝑃)
8518ad2antrr 764 . . . . . . 7 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ 𝐵 ∈ (𝑅𝐿𝑄)) → 𝑄𝑃)
8620ad2antrr 764 . . . . . . 7 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ 𝐵 ∈ (𝑅𝐿𝑄)) → 𝐶𝑃)
87 simplr 809 . . . . . . 7 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ 𝐵 ∈ (𝑅𝐿𝑄)) → ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶))
88 simpr 479 . . . . . . 7 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ 𝐵 ∈ (𝑅𝐿𝑄)) → 𝐵 ∈ (𝑅𝐿𝑄))
8911adantr 472 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) → 𝐺 ∈ TarskiG)
9016adantr 472 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) → 𝑅𝑃)
9118adantr 472 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) → 𝑄𝑃)
9220adantr 472 . . . . . . . . . 10 ((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) → 𝐶𝑃)
93 simpr 479 . . . . . . . . . 10 ((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) → ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶))
948, 10, 67, 89, 90, 91, 92, 93ncolne1 25711 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) → 𝑅𝑄)
958, 10, 67, 89, 90, 91, 94tglinerflx2 25720 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) → 𝑄 ∈ (𝑅𝐿𝑄))
9695adantr 472 . . . . . . 7 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ 𝐵 ∈ (𝑅𝐿𝑄)) → 𝑄 ∈ (𝑅𝐿𝑄))
978, 67, 10, 89, 91, 92, 90, 93ncolcom 25647 . . . . . . . . . . 11 ((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) → ¬ (𝑅 ∈ (𝐶𝐿𝑄) ∨ 𝐶 = 𝑄))
988, 67, 10, 89, 92, 91, 90, 97ncolrot1 25648 . . . . . . . . . 10 ((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) → ¬ (𝐶 ∈ (𝑄𝐿𝑅) ∨ 𝑄 = 𝑅))
998, 10, 67, 89, 92, 91, 90, 98ncolne1 25711 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) → 𝐶𝑄)
10099adantr 472 . . . . . . . 8 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ 𝐵 ∈ (𝑅𝐿𝑄)) → 𝐶𝑄)
10148ad2antrr 764 . . . . . . . 8 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ 𝐵 ∈ (𝑅𝐿𝑄)) → 𝑄 ∈ (𝐶𝐼𝐵))
1028, 10, 67, 83, 86, 85, 80, 100, 101btwnlng3 25707 . . . . . . 7 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ 𝐵 ∈ (𝑅𝐿𝑄)) → 𝐵 ∈ (𝐶𝐿𝑄))
1038, 10, 67, 83, 86, 85, 100tglinerflx2 25720 . . . . . . 7 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ 𝐵 ∈ (𝑅𝐿𝑄)) → 𝑄 ∈ (𝐶𝐿𝑄))
1048, 10, 67, 83, 84, 85, 86, 85, 87, 88, 96, 102, 103tglineinteq 25731 . . . . . 6 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ 𝐵 ∈ (𝑅𝐿𝑄)) → 𝐵 = 𝑄)
1058, 9, 10, 11, 16, 12tgbtwntriv2 25573 . . . . . . 7 (𝜑𝐵 ∈ (𝑅𝐼𝐵))
106105ad2antrr 764 . . . . . 6 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ 𝐵 ∈ (𝑅𝐿𝑄)) → 𝐵 ∈ (𝑅𝐼𝐵))
107104, 106eqeltrrd 2832 . . . . 5 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ 𝐵 ∈ (𝑅𝐿𝑄)) → 𝑄 ∈ (𝑅𝐼𝐵))
10882, 107jca 555 . . . 4 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ 𝐵 ∈ (𝑅𝐿𝑄)) → (𝐵 ∈ (𝐴𝐼𝐵) ∧ 𝑄 ∈ (𝑅𝐼𝐵)))
10980, 81, 108rspcedvd 3448 . . 3 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ 𝐵 ∈ (𝑅𝐿𝑄)) → ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑄 ∈ (𝑅𝐼𝑥)))
110 eleq1 2819 . . . . . . . . . 10 (𝑡 = 𝑥 → (𝑡 ∈ (𝑎𝐼𝑏) ↔ 𝑥 ∈ (𝑎𝐼𝑏)))
111110cbvrexv 3303 . . . . . . . . 9 (∃𝑡 ∈ (𝑅𝐿𝑄)𝑡 ∈ (𝑎𝐼𝑏) ↔ ∃𝑥 ∈ (𝑅𝐿𝑄)𝑥 ∈ (𝑎𝐼𝑏))
112111anbi2i 732 . . . . . . . 8 (((𝑎 ∈ (𝑃 ∖ (𝑅𝐿𝑄)) ∧ 𝑏 ∈ (𝑃 ∖ (𝑅𝐿𝑄))) ∧ ∃𝑡 ∈ (𝑅𝐿𝑄)𝑡 ∈ (𝑎𝐼𝑏)) ↔ ((𝑎 ∈ (𝑃 ∖ (𝑅𝐿𝑄)) ∧ 𝑏 ∈ (𝑃 ∖ (𝑅𝐿𝑄))) ∧ ∃𝑥 ∈ (𝑅𝐿𝑄)𝑥 ∈ (𝑎𝐼𝑏)))
113112opabbii 4861 . . . . . . 7 {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃 ∖ (𝑅𝐿𝑄)) ∧ 𝑏 ∈ (𝑃 ∖ (𝑅𝐿𝑄))) ∧ ∃𝑡 ∈ (𝑅𝐿𝑄)𝑡 ∈ (𝑎𝐼𝑏))} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃 ∖ (𝑅𝐿𝑄)) ∧ 𝑏 ∈ (𝑃 ∖ (𝑅𝐿𝑄))) ∧ ∃𝑥 ∈ (𝑅𝐿𝑄)𝑥 ∈ (𝑎𝐼𝑏))}
11489adantr 472 . . . . . . . 8 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) → 𝐺 ∈ TarskiG)
11590adantr 472 . . . . . . . 8 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) → 𝑅𝑃)
11691adantr 472 . . . . . . . 8 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) → 𝑄𝑃)
11794adantr 472 . . . . . . . 8 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) → 𝑅𝑄)
1188, 10, 67, 114, 115, 116, 117tgelrnln 25716 . . . . . . 7 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) → (𝑅𝐿𝑄) ∈ ran 𝐿)
119 eqid 2752 . . . . . . 7 (hlG‘𝐺) = (hlG‘𝐺)
12020ad2antrr 764 . . . . . . 7 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) → 𝐶𝑃)
1211ad2antrr 764 . . . . . . 7 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) → 𝐴𝑃)
12212adantr 472 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) → 𝐵𝑃)
123122adantr 472 . . . . . . 7 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) → 𝐵𝑃)
12495adantr 472 . . . . . . . 8 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) → 𝑄 ∈ (𝑅𝐿𝑄))
1258, 67, 10, 89, 91, 92, 90, 93ncolrot2 25649 . . . . . . . . . 10 ((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) → ¬ (𝐶 ∈ (𝑅𝐿𝑄) ∨ 𝑅 = 𝑄))
126 pm2.45 411 . . . . . . . . . 10 (¬ (𝐶 ∈ (𝑅𝐿𝑄) ∨ 𝑅 = 𝑄) → ¬ 𝐶 ∈ (𝑅𝐿𝑄))
127125, 126syl 17 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) → ¬ 𝐶 ∈ (𝑅𝐿𝑄))
128127adantr 472 . . . . . . . 8 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) → ¬ 𝐶 ∈ (𝑅𝐿𝑄))
129 simpr 479 . . . . . . . 8 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) → ¬ 𝐵 ∈ (𝑅𝐿𝑄))
13048ad2antrr 764 . . . . . . . 8 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) → 𝑄 ∈ (𝐶𝐼𝐵))
1318, 9, 10, 113, 120, 123, 124, 128, 129, 130islnoppd 25823 . . . . . . 7 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) → 𝐶{⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃 ∖ (𝑅𝐿𝑄)) ∧ 𝑏 ∈ (𝑃 ∖ (𝑅𝐿𝑄))) ∧ ∃𝑡 ∈ (𝑅𝐿𝑄)𝑡 ∈ (𝑎𝐼𝑏))}𝐵)
1328, 10, 67, 89, 90, 91, 94tglinerflx1 25719 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) → 𝑅 ∈ (𝑅𝐿𝑄))
133132adantr 472 . . . . . . 7 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) → 𝑅 ∈ (𝑅𝐿𝑄))
13423ad2antrr 764 . . . . . . . 8 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) → 𝐶 ∈ (𝐴𝐼𝑅))
13524ad2antrr 764 . . . . . . . . . 10 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) → 𝐶 ∈ (𝑅𝐼𝐴))
1368, 10, 67, 89, 92, 90, 91, 125ncolne1 25711 . . . . . . . . . . 11 ((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) → 𝐶𝑅)
137136adantr 472 . . . . . . . . . 10 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) → 𝐶𝑅)
1388, 9, 10, 114, 115, 120, 121, 135, 137tgbtwnne 25576 . . . . . . . . 9 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) → 𝑅𝐴)
139138necomd 2979 . . . . . . . 8 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) → 𝐴𝑅)
1408, 10, 119, 121, 115, 120, 114, 121, 134, 139, 137btwnhl2 25699 . . . . . . 7 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) → 𝐶((hlG‘𝐺)‘𝑅)𝐴)
1418, 9, 10, 113, 67, 118, 114, 119, 120, 121, 123, 131, 133, 140opphl 25837 . . . . . 6 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) → 𝐴{⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃 ∖ (𝑅𝐿𝑄)) ∧ 𝑏 ∈ (𝑃 ∖ (𝑅𝐿𝑄))) ∧ ∃𝑡 ∈ (𝑅𝐿𝑄)𝑡 ∈ (𝑎𝐼𝑏))}𝐵)
1428, 9, 10, 113, 121, 123islnopp 25822 . . . . . 6 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) → (𝐴{⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃 ∖ (𝑅𝐿𝑄)) ∧ 𝑏 ∈ (𝑃 ∖ (𝑅𝐿𝑄))) ∧ ∃𝑡 ∈ (𝑅𝐿𝑄)𝑡 ∈ (𝑎𝐼𝑏))}𝐵 ↔ ((¬ 𝐴 ∈ (𝑅𝐿𝑄) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ ∃𝑥 ∈ (𝑅𝐿𝑄)𝑥 ∈ (𝐴𝐼𝐵))))
143141, 142mpbid 222 . . . . 5 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) → ((¬ 𝐴 ∈ (𝑅𝐿𝑄) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ ∃𝑥 ∈ (𝑅𝐿𝑄)𝑥 ∈ (𝐴𝐼𝐵)))
144143simprd 482 . . . 4 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) → ∃𝑥 ∈ (𝑅𝐿𝑄)𝑥 ∈ (𝐴𝐼𝐵))
145114ad2antrr 764 . . . . . . . . 9 (((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) → 𝐺 ∈ TarskiG)
146118ad2antrr 764 . . . . . . . . 9 (((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) → (𝑅𝐿𝑄) ∈ ran 𝐿)
147 simplr 809 . . . . . . . . 9 (((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) → 𝑥 ∈ (𝑅𝐿𝑄))
1488, 67, 10, 145, 146, 147tglnpt 25635 . . . . . . . 8 (((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) → 𝑥𝑃)
149 simpr 479 . . . . . . . 8 (((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) → 𝑥 ∈ (𝐴𝐼𝐵))
150145ad2antrr 764 . . . . . . . . . . 11 (((((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑥𝐼𝑅) ∧ 𝑡 ∈ (𝐶𝐼𝐵))) → 𝐺 ∈ TarskiG)
15190ad3antrrr 768 . . . . . . . . . . . 12 (((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) → 𝑅𝑃)
152151ad2antrr 764 . . . . . . . . . . 11 (((((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑥𝐼𝑅) ∧ 𝑡 ∈ (𝐶𝐼𝐵))) → 𝑅𝑃)
15391ad5antr 775 . . . . . . . . . . 11 (((((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑥𝐼𝑅) ∧ 𝑡 ∈ (𝐶𝐼𝐵))) → 𝑄𝑃)
154120ad2antrr 764 . . . . . . . . . . . 12 (((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) → 𝐶𝑃)
155154ad2antrr 764 . . . . . . . . . . 11 (((((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑥𝐼𝑅) ∧ 𝑡 ∈ (𝐶𝐼𝐵))) → 𝐶𝑃)
15693ad5antr 775 . . . . . . . . . . 11 (((((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑥𝐼𝑅) ∧ 𝑡 ∈ (𝐶𝐼𝐵))) → ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶))
157 simplr 809 . . . . . . . . . . . 12 (((((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑥𝐼𝑅) ∧ 𝑡 ∈ (𝐶𝐼𝐵))) → 𝑡𝑃)
158117ad4antr 771 . . . . . . . . . . . 12 (((((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑥𝐼𝑅) ∧ 𝑡 ∈ (𝐶𝐼𝐵))) → 𝑅𝑄)
159148ad2antrr 764 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑥𝐼𝑅) ∧ 𝑡 ∈ (𝐶𝐼𝐵))) → 𝑥𝑃)
16094necomd 2979 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) → 𝑄𝑅)
161160ad5antr 775 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑥𝐼𝑅) ∧ 𝑡 ∈ (𝐶𝐼𝐵))) → 𝑄𝑅)
162147ad2antrr 764 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑥𝐼𝑅) ∧ 𝑡 ∈ (𝐶𝐼𝐵))) → 𝑥 ∈ (𝑅𝐿𝑄))
1638, 10, 67, 150, 153, 152, 159, 161, 162lncom 25708 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑥𝐼𝑅) ∧ 𝑡 ∈ (𝐶𝐼𝐵))) → 𝑥 ∈ (𝑄𝐿𝑅))
164 simprl 811 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑥𝐼𝑅) ∧ 𝑡 ∈ (𝐶𝐼𝐵))) → 𝑡 ∈ (𝑥𝐼𝑅))
1658, 10, 67, 150, 159, 153, 152, 157, 163, 164coltr3 25734 . . . . . . . . . . . 12 (((((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑥𝐼𝑅) ∧ 𝑡 ∈ (𝐶𝐼𝐵))) → 𝑡 ∈ (𝑄𝐿𝑅))
1668, 10, 67, 150, 152, 153, 157, 158, 165lncom 25708 . . . . . . . . . . 11 (((((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑥𝐼𝑅) ∧ 𝑡 ∈ (𝐶𝐼𝐵))) → 𝑡 ∈ (𝑅𝐿𝑄))
16795ad5antr 775 . . . . . . . . . . 11 (((((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑥𝐼𝑅) ∧ 𝑡 ∈ (𝐶𝐼𝐵))) → 𝑄 ∈ (𝑅𝐿𝑄))
16899ad5antr 775 . . . . . . . . . . . 12 (((((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑥𝐼𝑅) ∧ 𝑡 ∈ (𝐶𝐼𝐵))) → 𝐶𝑄)
169123ad2antrr 764 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) → 𝐵𝑃)
170169ad2antrr 764 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑥𝐼𝑅) ∧ 𝑡 ∈ (𝐶𝐼𝐵))) → 𝐵𝑃)
17199necomd 2979 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) → 𝑄𝐶)
17247adantr 472 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) → 𝑄 ∈ (𝐵𝐼𝐶))
1738, 10, 67, 89, 91, 92, 122, 171, 172btwnlng2 25706 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) → 𝐵 ∈ (𝑄𝐿𝐶))
174173ad5antr 775 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑥𝐼𝑅) ∧ 𝑡 ∈ (𝐶𝐼𝐵))) → 𝐵 ∈ (𝑄𝐿𝐶))
175 simprr 813 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑥𝐼𝑅) ∧ 𝑡 ∈ (𝐶𝐼𝐵))) → 𝑡 ∈ (𝐶𝐼𝐵))
1768, 9, 10, 150, 155, 157, 170, 175tgbtwncom 25574 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑥𝐼𝑅) ∧ 𝑡 ∈ (𝐶𝐼𝐵))) → 𝑡 ∈ (𝐵𝐼𝐶))
1778, 10, 67, 150, 170, 153, 155, 157, 174, 176coltr3 25734 . . . . . . . . . . . 12 (((((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑥𝐼𝑅) ∧ 𝑡 ∈ (𝐶𝐼𝐵))) → 𝑡 ∈ (𝑄𝐿𝐶))
1788, 10, 67, 150, 155, 153, 157, 168, 177lncom 25708 . . . . . . . . . . 11 (((((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑥𝐼𝑅) ∧ 𝑡 ∈ (𝐶𝐼𝐵))) → 𝑡 ∈ (𝐶𝐿𝑄))
1798, 10, 67, 89, 92, 91, 99tglinerflx2 25720 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) → 𝑄 ∈ (𝐶𝐿𝑄))
180179ad5antr 775 . . . . . . . . . . 11 (((((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑥𝐼𝑅) ∧ 𝑡 ∈ (𝐶𝐼𝐵))) → 𝑄 ∈ (𝐶𝐿𝑄))
1818, 10, 67, 150, 152, 153, 155, 153, 156, 166, 167, 178, 180tglineinteq 25731 . . . . . . . . . 10 (((((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑥𝐼𝑅) ∧ 𝑡 ∈ (𝐶𝐼𝐵))) → 𝑡 = 𝑄)
1828, 9, 10, 150, 159, 157, 152, 164tgbtwncom 25574 . . . . . . . . . 10 (((((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑥𝐼𝑅) ∧ 𝑡 ∈ (𝐶𝐼𝐵))) → 𝑡 ∈ (𝑅𝐼𝑥))
183181, 182eqeltrrd 2832 . . . . . . . . 9 (((((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) ∧ 𝑡𝑃) ∧ (𝑡 ∈ (𝑥𝐼𝑅) ∧ 𝑡 ∈ (𝐶𝐼𝐵))) → 𝑄 ∈ (𝑅𝐼𝑥))
184121ad2antrr 764 . . . . . . . . . 10 (((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) → 𝐴𝑃)
1858, 9, 10, 145, 184, 148, 169, 149tgbtwncom 25574 . . . . . . . . . 10 (((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) → 𝑥 ∈ (𝐵𝐼𝐴))
18624ad4antr 771 . . . . . . . . . 10 (((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ (𝑅𝐼𝐴))
1878, 9, 10, 145, 169, 151, 184, 148, 154, 185, 186axtgpasch 25557 . . . . . . . . 9 (((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) → ∃𝑡𝑃 (𝑡 ∈ (𝑥𝐼𝑅) ∧ 𝑡 ∈ (𝐶𝐼𝐵)))
188183, 187r19.29a 3208 . . . . . . . 8 (((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) → 𝑄 ∈ (𝑅𝐼𝑥))
189148, 149, 188jca32 559 . . . . . . 7 (((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝑅𝐿𝑄)) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) → (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑄 ∈ (𝑅𝐼𝑥))))
190189anasss 682 . . . . . 6 ((((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) ∧ (𝑥 ∈ (𝑅𝐿𝑄) ∧ 𝑥 ∈ (𝐴𝐼𝐵))) → (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑄 ∈ (𝑅𝐼𝑥))))
191190ex 449 . . . . 5 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) → ((𝑥 ∈ (𝑅𝐿𝑄) ∧ 𝑥 ∈ (𝐴𝐼𝐵)) → (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑄 ∈ (𝑅𝐼𝑥)))))
192191reximdv2 3144 . . . 4 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) → (∃𝑥 ∈ (𝑅𝐿𝑄)𝑥 ∈ (𝐴𝐼𝐵) → ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑄 ∈ (𝑅𝐼𝑥))))
193144, 192mpd 15 . . 3 (((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) ∧ ¬ 𝐵 ∈ (𝑅𝐿𝑄)) → ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑄 ∈ (𝑅𝐼𝑥)))
194109, 193pm2.61dan 867 . 2 ((𝜑 ∧ ¬ (𝑅 ∈ (𝑄𝐿𝐶) ∨ 𝑄 = 𝐶)) → ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑄 ∈ (𝑅𝐼𝑥)))
19579, 194pm2.61dan 867 1 (𝜑 → ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑄 ∈ (𝑅𝐼𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  w3o 1071   = wceq 1624  wcel 2131  wne 2924  wrex 3043  cdif 3704   class class class wbr 4796  {copab 4856  ran crn 5259  cfv 6041  (class class class)co 6805  Basecbs 16051  distcds 16144  TarskiGcstrkg 25520  Itvcitv 25526  LineGclng 25527  hlGchlg 25686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-1st 7325  df-2nd 7326  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-oadd 7725  df-er 7903  df-map 8017  df-pm 8018  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-card 8947  df-cda 9174  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-nn 11205  df-2 11263  df-3 11264  df-n0 11477  df-xnn0 11548  df-z 11562  df-uz 11872  df-fz 12512  df-fzo 12652  df-hash 13304  df-word 13477  df-concat 13479  df-s1 13480  df-s2 13785  df-s3 13786  df-trkgc 25538  df-trkgb 25539  df-trkgcb 25540  df-trkgld 25542  df-trkg 25543  df-cgrg 25597  df-leg 25669  df-hlg 25687  df-mir 25739  df-rag 25780  df-perpg 25782
This theorem is referenced by:  hlpasch  25839
  Copyright terms: Public domain W3C validator