Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  otiunsndisj Structured version   Visualization version   GIF version

Theorem otiunsndisj 5131
 Description: The union of singletons consisting of ordered triples which have distinct first and third components are disjoint. (Contributed by Alexander van der Vekens, 10-Mar-2018.)
Assertion
Ref Expression
otiunsndisj (𝐵𝑋Disj 𝑎𝑉 𝑐 ∈ (𝑊 ∖ {𝑎}){⟨𝑎, 𝐵, 𝑐⟩})
Distinct variable groups:   𝐵,𝑎,𝑐   𝑉,𝑎,𝑐   𝑊,𝑎,𝑐   𝑋,𝑎,𝑐

Proof of Theorem otiunsndisj
Dummy variables 𝑑 𝑒 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eliun 4677 . . . . . . . . . 10 (𝑠 𝑐 ∈ (𝑊 ∖ {𝑎}){⟨𝑎, 𝐵, 𝑐⟩} ↔ ∃𝑐 ∈ (𝑊 ∖ {𝑎})𝑠 ∈ {⟨𝑎, 𝐵, 𝑐⟩})
2 otthg 5103 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑎𝑉𝐵𝑋𝑐 ∈ (𝑊 ∖ {𝑎})) → (⟨𝑎, 𝐵, 𝑐⟩ = ⟨𝑑, 𝐵, 𝑒⟩ ↔ (𝑎 = 𝑑𝐵 = 𝐵𝑐 = 𝑒)))
3 simp1 1131 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑎 = 𝑑𝐵 = 𝐵𝑐 = 𝑒) → 𝑎 = 𝑑)
42, 3syl6bi 243 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎𝑉𝐵𝑋𝑐 ∈ (𝑊 ∖ {𝑎})) → (⟨𝑎, 𝐵, 𝑐⟩ = ⟨𝑑, 𝐵, 𝑒⟩ → 𝑎 = 𝑑))
54con3d 148 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎𝑉𝐵𝑋𝑐 ∈ (𝑊 ∖ {𝑎})) → (¬ 𝑎 = 𝑑 → ¬ ⟨𝑎, 𝐵, 𝑐⟩ = ⟨𝑑, 𝐵, 𝑒⟩))
653exp 1113 . . . . . . . . . . . . . . . . . . . . 21 (𝑎𝑉 → (𝐵𝑋 → (𝑐 ∈ (𝑊 ∖ {𝑎}) → (¬ 𝑎 = 𝑑 → ¬ ⟨𝑎, 𝐵, 𝑐⟩ = ⟨𝑑, 𝐵, 𝑒⟩))))
76impcom 445 . . . . . . . . . . . . . . . . . . . 20 ((𝐵𝑋𝑎𝑉) → (𝑐 ∈ (𝑊 ∖ {𝑎}) → (¬ 𝑎 = 𝑑 → ¬ ⟨𝑎, 𝐵, 𝑐⟩ = ⟨𝑑, 𝐵, 𝑒⟩)))
87com3r 87 . . . . . . . . . . . . . . . . . . 19 𝑎 = 𝑑 → ((𝐵𝑋𝑎𝑉) → (𝑐 ∈ (𝑊 ∖ {𝑎}) → ¬ ⟨𝑎, 𝐵, 𝑐⟩ = ⟨𝑑, 𝐵, 𝑒⟩)))
98imp31 447 . . . . . . . . . . . . . . . . . 18 (((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋𝑎𝑉)) ∧ 𝑐 ∈ (𝑊 ∖ {𝑎})) → ¬ ⟨𝑎, 𝐵, 𝑐⟩ = ⟨𝑑, 𝐵, 𝑒⟩)
10 velsn 4338 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ {⟨𝑎, 𝐵, 𝑐⟩} ↔ 𝑠 = ⟨𝑎, 𝐵, 𝑐⟩)
11 eqeq1 2765 . . . . . . . . . . . . . . . . . . . 20 (𝑠 = ⟨𝑎, 𝐵, 𝑐⟩ → (𝑠 = ⟨𝑑, 𝐵, 𝑒⟩ ↔ ⟨𝑎, 𝐵, 𝑐⟩ = ⟨𝑑, 𝐵, 𝑒⟩))
1211notbid 307 . . . . . . . . . . . . . . . . . . 19 (𝑠 = ⟨𝑎, 𝐵, 𝑐⟩ → (¬ 𝑠 = ⟨𝑑, 𝐵, 𝑒⟩ ↔ ¬ ⟨𝑎, 𝐵, 𝑐⟩ = ⟨𝑑, 𝐵, 𝑒⟩))
1310, 12sylbi 207 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ {⟨𝑎, 𝐵, 𝑐⟩} → (¬ 𝑠 = ⟨𝑑, 𝐵, 𝑒⟩ ↔ ¬ ⟨𝑎, 𝐵, 𝑐⟩ = ⟨𝑑, 𝐵, 𝑒⟩))
149, 13syl5ibrcom 237 . . . . . . . . . . . . . . . . 17 (((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋𝑎𝑉)) ∧ 𝑐 ∈ (𝑊 ∖ {𝑎})) → (𝑠 ∈ {⟨𝑎, 𝐵, 𝑐⟩} → ¬ 𝑠 = ⟨𝑑, 𝐵, 𝑒⟩))
1514imp 444 . . . . . . . . . . . . . . . 16 ((((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋𝑎𝑉)) ∧ 𝑐 ∈ (𝑊 ∖ {𝑎})) ∧ 𝑠 ∈ {⟨𝑎, 𝐵, 𝑐⟩}) → ¬ 𝑠 = ⟨𝑑, 𝐵, 𝑒⟩)
16 velsn 4338 . . . . . . . . . . . . . . . 16 (𝑠 ∈ {⟨𝑑, 𝐵, 𝑒⟩} ↔ 𝑠 = ⟨𝑑, 𝐵, 𝑒⟩)
1715, 16sylnibr 318 . . . . . . . . . . . . . . 15 ((((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋𝑎𝑉)) ∧ 𝑐 ∈ (𝑊 ∖ {𝑎})) ∧ 𝑠 ∈ {⟨𝑎, 𝐵, 𝑐⟩}) → ¬ 𝑠 ∈ {⟨𝑑, 𝐵, 𝑒⟩})
1817adantr 472 . . . . . . . . . . . . . 14 (((((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋𝑎𝑉)) ∧ 𝑐 ∈ (𝑊 ∖ {𝑎})) ∧ 𝑠 ∈ {⟨𝑎, 𝐵, 𝑐⟩}) ∧ 𝑒 ∈ (𝑊 ∖ {𝑑})) → ¬ 𝑠 ∈ {⟨𝑑, 𝐵, 𝑒⟩})
1918nrexdv 3140 . . . . . . . . . . . . 13 ((((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋𝑎𝑉)) ∧ 𝑐 ∈ (𝑊 ∖ {𝑎})) ∧ 𝑠 ∈ {⟨𝑎, 𝐵, 𝑐⟩}) → ¬ ∃𝑒 ∈ (𝑊 ∖ {𝑑})𝑠 ∈ {⟨𝑑, 𝐵, 𝑒⟩})
20 eliun 4677 . . . . . . . . . . . . 13 (𝑠 𝑒 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑒⟩} ↔ ∃𝑒 ∈ (𝑊 ∖ {𝑑})𝑠 ∈ {⟨𝑑, 𝐵, 𝑒⟩})
2119, 20sylnibr 318 . . . . . . . . . . . 12 ((((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋𝑎𝑉)) ∧ 𝑐 ∈ (𝑊 ∖ {𝑎})) ∧ 𝑠 ∈ {⟨𝑎, 𝐵, 𝑐⟩}) → ¬ 𝑠 𝑒 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑒⟩})
2221ex 449 . . . . . . . . . . 11 (((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋𝑎𝑉)) ∧ 𝑐 ∈ (𝑊 ∖ {𝑎})) → (𝑠 ∈ {⟨𝑎, 𝐵, 𝑐⟩} → ¬ 𝑠 𝑒 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑒⟩}))
2322rexlimdva 3170 . . . . . . . . . 10 ((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋𝑎𝑉)) → (∃𝑐 ∈ (𝑊 ∖ {𝑎})𝑠 ∈ {⟨𝑎, 𝐵, 𝑐⟩} → ¬ 𝑠 𝑒 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑒⟩}))
241, 23syl5bi 232 . . . . . . . . 9 ((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋𝑎𝑉)) → (𝑠 𝑐 ∈ (𝑊 ∖ {𝑎}){⟨𝑎, 𝐵, 𝑐⟩} → ¬ 𝑠 𝑒 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑒⟩}))
2524ralrimiv 3104 . . . . . . . 8 ((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋𝑎𝑉)) → ∀𝑠 𝑐 ∈ (𝑊 ∖ {𝑎}){⟨𝑎, 𝐵, 𝑐⟩} ¬ 𝑠 𝑒 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑒⟩})
26 oteq3 4565 . . . . . . . . . . . . 13 (𝑐 = 𝑒 → ⟨𝑑, 𝐵, 𝑐⟩ = ⟨𝑑, 𝐵, 𝑒⟩)
2726sneqd 4334 . . . . . . . . . . . 12 (𝑐 = 𝑒 → {⟨𝑑, 𝐵, 𝑐⟩} = {⟨𝑑, 𝐵, 𝑒⟩})
2827cbviunv 4712 . . . . . . . . . . 11 𝑐 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑐⟩} = 𝑒 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑒⟩}
2928eleq2i 2832 . . . . . . . . . 10 (𝑠 𝑐 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑐⟩} ↔ 𝑠 𝑒 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑒⟩})
3029notbii 309 . . . . . . . . 9 𝑠 𝑐 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑐⟩} ↔ ¬ 𝑠 𝑒 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑒⟩})
3130ralbii 3119 . . . . . . . 8 (∀𝑠 𝑐 ∈ (𝑊 ∖ {𝑎}){⟨𝑎, 𝐵, 𝑐⟩} ¬ 𝑠 𝑐 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑐⟩} ↔ ∀𝑠 𝑐 ∈ (𝑊 ∖ {𝑎}){⟨𝑎, 𝐵, 𝑐⟩} ¬ 𝑠 𝑒 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑒⟩})
3225, 31sylibr 224 . . . . . . 7 ((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋𝑎𝑉)) → ∀𝑠 𝑐 ∈ (𝑊 ∖ {𝑎}){⟨𝑎, 𝐵, 𝑐⟩} ¬ 𝑠 𝑐 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑐⟩})
33 disj 4161 . . . . . . 7 (( 𝑐 ∈ (𝑊 ∖ {𝑎}){⟨𝑎, 𝐵, 𝑐⟩} ∩ 𝑐 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑐⟩}) = ∅ ↔ ∀𝑠 𝑐 ∈ (𝑊 ∖ {𝑎}){⟨𝑎, 𝐵, 𝑐⟩} ¬ 𝑠 𝑐 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑐⟩})
3432, 33sylibr 224 . . . . . 6 ((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋𝑎𝑉)) → ( 𝑐 ∈ (𝑊 ∖ {𝑎}){⟨𝑎, 𝐵, 𝑐⟩} ∩ 𝑐 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑐⟩}) = ∅)
3534expcom 450 . . . . 5 ((𝐵𝑋𝑎𝑉) → (¬ 𝑎 = 𝑑 → ( 𝑐 ∈ (𝑊 ∖ {𝑎}){⟨𝑎, 𝐵, 𝑐⟩} ∩ 𝑐 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑐⟩}) = ∅))
3635orrd 392 . . . 4 ((𝐵𝑋𝑎𝑉) → (𝑎 = 𝑑 ∨ ( 𝑐 ∈ (𝑊 ∖ {𝑎}){⟨𝑎, 𝐵, 𝑐⟩} ∩ 𝑐 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑐⟩}) = ∅))
3736adantrr 755 . . 3 ((𝐵𝑋 ∧ (𝑎𝑉𝑑𝑉)) → (𝑎 = 𝑑 ∨ ( 𝑐 ∈ (𝑊 ∖ {𝑎}){⟨𝑎, 𝐵, 𝑐⟩} ∩ 𝑐 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑐⟩}) = ∅))
3837ralrimivva 3110 . 2 (𝐵𝑋 → ∀𝑎𝑉𝑑𝑉 (𝑎 = 𝑑 ∨ ( 𝑐 ∈ (𝑊 ∖ {𝑎}){⟨𝑎, 𝐵, 𝑐⟩} ∩ 𝑐 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑐⟩}) = ∅))
39 sneq 4332 . . . . 5 (𝑎 = 𝑑 → {𝑎} = {𝑑})
4039difeq2d 3872 . . . 4 (𝑎 = 𝑑 → (𝑊 ∖ {𝑎}) = (𝑊 ∖ {𝑑}))
41 oteq1 4563 . . . . 5 (𝑎 = 𝑑 → ⟨𝑎, 𝐵, 𝑐⟩ = ⟨𝑑, 𝐵, 𝑐⟩)
4241sneqd 4334 . . . 4 (𝑎 = 𝑑 → {⟨𝑎, 𝐵, 𝑐⟩} = {⟨𝑑, 𝐵, 𝑐⟩})
4340, 42iuneq12d 4699 . . 3 (𝑎 = 𝑑 𝑐 ∈ (𝑊 ∖ {𝑎}){⟨𝑎, 𝐵, 𝑐⟩} = 𝑐 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑐⟩})
4443disjor 4787 . 2 (Disj 𝑎𝑉 𝑐 ∈ (𝑊 ∖ {𝑎}){⟨𝑎, 𝐵, 𝑐⟩} ↔ ∀𝑎𝑉𝑑𝑉 (𝑎 = 𝑑 ∨ ( 𝑐 ∈ (𝑊 ∖ {𝑎}){⟨𝑎, 𝐵, 𝑐⟩} ∩ 𝑐 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑐⟩}) = ∅))
4538, 44sylibr 224 1 (𝐵𝑋Disj 𝑎𝑉 𝑐 ∈ (𝑊 ∖ {𝑎}){⟨𝑎, 𝐵, 𝑐⟩})
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∨ wo 382   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2140  ∀wral 3051  ∃wrex 3052   ∖ cdif 3713   ∩ cin 3715  ∅c0 4059  {csn 4322  ⟨cotp 4330  ∪ ciun 4673  Disj wdisj 4773 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-sep 4934  ax-nul 4942  ax-pr 5056 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ral 3056  df-rex 3057  df-rmo 3059  df-rab 3060  df-v 3343  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-nul 4060  df-if 4232  df-sn 4323  df-pr 4325  df-op 4329  df-ot 4331  df-iun 4675  df-disj 4774 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator