![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oteqex2 | Structured version Visualization version GIF version |
Description: Equivalence of existence implied by equality of ordered triples. (Contributed by NM, 26-Apr-2015.) |
Ref | Expression |
---|---|
oteqex2 | ⊢ (〈〈𝐴, 𝐵〉, 𝐶〉 = 〈〈𝑅, 𝑆〉, 𝑇〉 → (𝐶 ∈ V ↔ 𝑇 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeqex 4991 | . 2 ⊢ (〈〈𝐴, 𝐵〉, 𝐶〉 = 〈〈𝑅, 𝑆〉, 𝑇〉 → ((〈𝐴, 𝐵〉 ∈ V ∧ 𝐶 ∈ V) ↔ (〈𝑅, 𝑆〉 ∈ V ∧ 𝑇 ∈ V))) | |
2 | opex 4962 | . . 3 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
3 | 2 | biantrur 526 | . 2 ⊢ (𝐶 ∈ V ↔ (〈𝐴, 𝐵〉 ∈ V ∧ 𝐶 ∈ V)) |
4 | opex 4962 | . . 3 ⊢ 〈𝑅, 𝑆〉 ∈ V | |
5 | 4 | biantrur 526 | . 2 ⊢ (𝑇 ∈ V ↔ (〈𝑅, 𝑆〉 ∈ V ∧ 𝑇 ∈ V)) |
6 | 1, 3, 5 | 3bitr4g 303 | 1 ⊢ (〈〈𝐴, 𝐵〉, 𝐶〉 = 〈〈𝑅, 𝑆〉, 𝑇〉 → (𝐶 ∈ V ↔ 𝑇 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 Vcvv 3231 〈cop 4216 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 |
This theorem is referenced by: oteqex 4993 |
Copyright terms: Public domain | W3C validator |