MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oteqex Structured version   Visualization version   GIF version

Theorem oteqex 5091
Description: Equivalence of existence implied by equality of ordered triples. (Contributed by NM, 28-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
oteqex (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ = ⟨⟨𝑅, 𝑆⟩, 𝑇⟩ → ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) ↔ (𝑅 ∈ V ∧ 𝑆 ∈ V ∧ 𝑇 ∈ V)))

Proof of Theorem oteqex
StepHypRef Expression
1 simp3 1131 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) → 𝐶 ∈ V)
21a1i 11 . 2 (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ = ⟨⟨𝑅, 𝑆⟩, 𝑇⟩ → ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) → 𝐶 ∈ V))
3 simp3 1131 . . 3 ((𝑅 ∈ V ∧ 𝑆 ∈ V ∧ 𝑇 ∈ V) → 𝑇 ∈ V)
4 oteqex2 5090 . . 3 (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ = ⟨⟨𝑅, 𝑆⟩, 𝑇⟩ → (𝐶 ∈ V ↔ 𝑇 ∈ V))
53, 4syl5ibr 236 . 2 (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ = ⟨⟨𝑅, 𝑆⟩, 𝑇⟩ → ((𝑅 ∈ V ∧ 𝑆 ∈ V ∧ 𝑇 ∈ V) → 𝐶 ∈ V))
6 opex 5060 . . . . . . . 8 𝐴, 𝐵⟩ ∈ V
7 opthg 5073 . . . . . . . 8 ((⟨𝐴, 𝐵⟩ ∈ V ∧ 𝐶 ∈ V) → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ = ⟨⟨𝑅, 𝑆⟩, 𝑇⟩ ↔ (⟨𝐴, 𝐵⟩ = ⟨𝑅, 𝑆⟩ ∧ 𝐶 = 𝑇)))
86, 7mpan 662 . . . . . . 7 (𝐶 ∈ V → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ = ⟨⟨𝑅, 𝑆⟩, 𝑇⟩ ↔ (⟨𝐴, 𝐵⟩ = ⟨𝑅, 𝑆⟩ ∧ 𝐶 = 𝑇)))
98simprbda 480 . . . . . 6 ((𝐶 ∈ V ∧ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ = ⟨⟨𝑅, 𝑆⟩, 𝑇⟩) → ⟨𝐴, 𝐵⟩ = ⟨𝑅, 𝑆⟩)
10 opeqex 5089 . . . . . 6 (⟨𝐴, 𝐵⟩ = ⟨𝑅, 𝑆⟩ → ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝑅 ∈ V ∧ 𝑆 ∈ V)))
119, 10syl 17 . . . . 5 ((𝐶 ∈ V ∧ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ = ⟨⟨𝑅, 𝑆⟩, 𝑇⟩) → ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝑅 ∈ V ∧ 𝑆 ∈ V)))
124adantl 467 . . . . 5 ((𝐶 ∈ V ∧ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ = ⟨⟨𝑅, 𝑆⟩, 𝑇⟩) → (𝐶 ∈ V ↔ 𝑇 ∈ V))
1311, 12anbi12d 608 . . . 4 ((𝐶 ∈ V ∧ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ = ⟨⟨𝑅, 𝑆⟩, 𝑇⟩) → (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐶 ∈ V) ↔ ((𝑅 ∈ V ∧ 𝑆 ∈ V) ∧ 𝑇 ∈ V)))
14 df-3an 1072 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐶 ∈ V))
15 df-3an 1072 . . . 4 ((𝑅 ∈ V ∧ 𝑆 ∈ V ∧ 𝑇 ∈ V) ↔ ((𝑅 ∈ V ∧ 𝑆 ∈ V) ∧ 𝑇 ∈ V))
1613, 14, 153bitr4g 303 . . 3 ((𝐶 ∈ V ∧ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ = ⟨⟨𝑅, 𝑆⟩, 𝑇⟩) → ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) ↔ (𝑅 ∈ V ∧ 𝑆 ∈ V ∧ 𝑇 ∈ V)))
1716expcom 398 . 2 (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ = ⟨⟨𝑅, 𝑆⟩, 𝑇⟩ → (𝐶 ∈ V → ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) ↔ (𝑅 ∈ V ∧ 𝑆 ∈ V ∧ 𝑇 ∈ V))))
182, 5, 17pm5.21ndd 368 1 (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ = ⟨⟨𝑅, 𝑆⟩, 𝑇⟩ → ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) ↔ (𝑅 ∈ V ∧ 𝑆 ∈ V ∧ 𝑇 ∈ V)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1070   = wceq 1630  wcel 2144  Vcvv 3349  cop 4320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pr 5034
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-rab 3069  df-v 3351  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-sn 4315  df-pr 4317  df-op 4321
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator