Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  oteq3 Structured version   Visualization version   GIF version

Theorem oteq3 4547
 Description: Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015.)
Assertion
Ref Expression
oteq3 (𝐴 = 𝐵 → ⟨𝐶, 𝐷, 𝐴⟩ = ⟨𝐶, 𝐷, 𝐵⟩)

Proof of Theorem oteq3
StepHypRef Expression
1 opeq2 4537 . 2 (𝐴 = 𝐵 → ⟨⟨𝐶, 𝐷⟩, 𝐴⟩ = ⟨⟨𝐶, 𝐷⟩, 𝐵⟩)
2 df-ot 4322 . 2 𝐶, 𝐷, 𝐴⟩ = ⟨⟨𝐶, 𝐷⟩, 𝐴
3 df-ot 4322 . 2 𝐶, 𝐷, 𝐵⟩ = ⟨⟨𝐶, 𝐷⟩, 𝐵
41, 2, 33eqtr4g 2828 1 (𝐴 = 𝐵 → ⟨𝐶, 𝐷, 𝐴⟩ = ⟨𝐶, 𝐷, 𝐵⟩)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1629  ⟨cop 4319  ⟨cotp 4321 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1868  ax-4 1883  ax-5 1989  ax-6 2055  ax-7 2091  ax-9 2152  ax-10 2172  ax-11 2188  ax-12 2201  ax-13 2406  ax-ext 2749 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1071  df-tru 1632  df-ex 1851  df-nf 1856  df-sb 2048  df-clab 2756  df-cleq 2762  df-clel 2765  df-nfc 2900  df-rab 3068  df-v 3350  df-dif 3723  df-un 3725  df-in 3727  df-ss 3734  df-nul 4061  df-if 4223  df-sn 4314  df-pr 4316  df-op 4320  df-ot 4322 This theorem is referenced by:  oteq3d  4550  otsndisj  5111  otiunsndisj  5112  efgi0  18346  efgi1  18347  mapdhcl  37537  mapdh6dN  37549  mapdh8  37598  mapdh9a  37599  mapdh9aOLDN  37600  hdmap1l6d  37623  hdmapval  37638  hdmapval2  37642  hdmapval3N  37648  otiunsndisjX  41821
 Copyright terms: Public domain W3C validator