![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ot1stg | Structured version Visualization version GIF version |
Description: Extract the first member of an ordered triple. (Due to infrequent usage, it isn't worthwhile at this point to define special extractors for triples, so we reuse the ordered pair extractors for ot1stg 7299, ot2ndg 7300, ot3rdg 7301.) (Contributed by NM, 3-Apr-2015.) (Revised by Mario Carneiro, 2-May-2015.) |
Ref | Expression |
---|---|
ot1stg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (1st ‘(1st ‘〈𝐴, 𝐵, 𝐶〉)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ot 4294 | . . . . . 6 ⊢ 〈𝐴, 𝐵, 𝐶〉 = 〈〈𝐴, 𝐵〉, 𝐶〉 | |
2 | 1 | fveq2i 6307 | . . . . 5 ⊢ (1st ‘〈𝐴, 𝐵, 𝐶〉) = (1st ‘〈〈𝐴, 𝐵〉, 𝐶〉) |
3 | opex 5037 | . . . . . 6 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
4 | op1stg 7297 | . . . . . 6 ⊢ ((〈𝐴, 𝐵〉 ∈ V ∧ 𝐶 ∈ 𝑋) → (1st ‘〈〈𝐴, 𝐵〉, 𝐶〉) = 〈𝐴, 𝐵〉) | |
5 | 3, 4 | mpan 708 | . . . . 5 ⊢ (𝐶 ∈ 𝑋 → (1st ‘〈〈𝐴, 𝐵〉, 𝐶〉) = 〈𝐴, 𝐵〉) |
6 | 2, 5 | syl5eq 2770 | . . . 4 ⊢ (𝐶 ∈ 𝑋 → (1st ‘〈𝐴, 𝐵, 𝐶〉) = 〈𝐴, 𝐵〉) |
7 | 6 | fveq2d 6308 | . . 3 ⊢ (𝐶 ∈ 𝑋 → (1st ‘(1st ‘〈𝐴, 𝐵, 𝐶〉)) = (1st ‘〈𝐴, 𝐵〉)) |
8 | op1stg 7297 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (1st ‘〈𝐴, 𝐵〉) = 𝐴) | |
9 | 7, 8 | sylan9eqr 2780 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ 𝐶 ∈ 𝑋) → (1st ‘(1st ‘〈𝐴, 𝐵, 𝐶〉)) = 𝐴) |
10 | 9 | 3impa 1100 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (1st ‘(1st ‘〈𝐴, 𝐵, 𝐶〉)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1596 ∈ wcel 2103 Vcvv 3304 〈cop 4291 〈cotp 4293 ‘cfv 6001 1st c1st 7283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ral 3019 df-rex 3020 df-rab 3023 df-v 3306 df-sbc 3542 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-nul 4024 df-if 4195 df-sn 4286 df-pr 4288 df-op 4292 df-ot 4294 df-uni 4545 df-br 4761 df-opab 4821 df-mpt 4838 df-id 5128 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-iota 5964 df-fun 6003 df-fv 6009 df-1st 7285 |
This theorem is referenced by: oteqimp 7304 el2xptp0 7331 splval 13623 mamufval 20314 msrval 31663 elmsta 31673 mapdhval 37432 hdmap1val 37507 |
Copyright terms: Public domain | W3C validator |