Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  osumcllem8N Structured version   Visualization version   GIF version

Theorem osumcllem8N 35772
Description: Lemma for osumclN 35776. (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
osumcllem.l = (le‘𝐾)
osumcllem.j = (join‘𝐾)
osumcllem.a 𝐴 = (Atoms‘𝐾)
osumcllem.p + = (+𝑃𝐾)
osumcllem.o = (⊥𝑃𝐾)
osumcllem.c 𝐶 = (PSubCl‘𝐾)
osumcllem.m 𝑀 = (𝑋 + {𝑝})
osumcllem.u 𝑈 = ( ‘( ‘(𝑋 + 𝑌)))
Assertion
Ref Expression
osumcllem8N (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑌𝑀) = ∅)

Proof of Theorem osumcllem8N
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 n0 4079 . . . 4 ((𝑌𝑀) ≠ ∅ ↔ ∃𝑞 𝑞 ∈ (𝑌𝑀))
2 osumcllem.l . . . . . . 7 = (le‘𝐾)
3 osumcllem.j . . . . . . 7 = (join‘𝐾)
4 osumcllem.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
5 osumcllem.p . . . . . . 7 + = (+𝑃𝐾)
6 osumcllem.o . . . . . . 7 = (⊥𝑃𝐾)
7 osumcllem.c . . . . . . 7 𝐶 = (PSubCl‘𝐾)
8 osumcllem.m . . . . . . 7 𝑀 = (𝑋 + {𝑝})
9 osumcllem.u . . . . . . 7 𝑈 = ( ‘( ‘(𝑋 + 𝑌)))
102, 3, 4, 5, 6, 7, 8, 9osumcllem7N 35771 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ 𝑞 ∈ (𝑌𝑀)) → 𝑝 ∈ (𝑋 + 𝑌))
11103expia 1114 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴)) → (𝑞 ∈ (𝑌𝑀) → 𝑝 ∈ (𝑋 + 𝑌)))
1211exlimdv 2013 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴)) → (∃𝑞 𝑞 ∈ (𝑌𝑀) → 𝑝 ∈ (𝑋 + 𝑌)))
131, 12syl5bi 232 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴)) → ((𝑌𝑀) ≠ ∅ → 𝑝 ∈ (𝑋 + 𝑌)))
1413necon1bd 2961 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴)) → (¬ 𝑝 ∈ (𝑋 + 𝑌) → (𝑌𝑀) = ∅))
15143impia 1109 1 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑌𝑀) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382  w3a 1071   = wceq 1631  wex 1852  wcel 2145  wne 2943  cin 3722  wss 3723  c0 4063  {csn 4317  cfv 6030  (class class class)co 6796  lecple 16156  joincjn 17152  Atomscatm 35072  HLchlt 35159  +𝑃cpadd 35604  𝑃cpolN 35711  PSubClcpscN 35743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-riotaBAD 34761
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-iun 4657  df-iin 4658  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-1st 7319  df-2nd 7320  df-undef 7555  df-preset 17136  df-poset 17154  df-plt 17166  df-lub 17182  df-glb 17183  df-join 17184  df-meet 17185  df-p0 17247  df-p1 17248  df-lat 17254  df-clat 17316  df-oposet 34985  df-ol 34987  df-oml 34988  df-covers 35075  df-ats 35076  df-atl 35107  df-cvlat 35131  df-hlat 35160  df-pmap 35313  df-padd 35605  df-polarityN 35712
This theorem is referenced by:  osumcllem9N  35773
  Copyright terms: Public domain W3C validator