Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  osumcllem7N Structured version   Visualization version   GIF version

Theorem osumcllem7N 35751
Description: Lemma for osumclN 35756. (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
osumcllem.l = (le‘𝐾)
osumcllem.j = (join‘𝐾)
osumcllem.a 𝐴 = (Atoms‘𝐾)
osumcllem.p + = (+𝑃𝐾)
osumcllem.o = (⊥𝑃𝐾)
osumcllem.c 𝐶 = (PSubCl‘𝐾)
osumcllem.m 𝑀 = (𝑋 + {𝑝})
osumcllem.u 𝑈 = ( ‘( ‘(𝑋 + 𝑌)))
Assertion
Ref Expression
osumcllem7N (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ 𝑞 ∈ (𝑌𝑀)) → 𝑝 ∈ (𝑋 + 𝑌))
Distinct variable groups:   𝐴,𝑞   𝐾,𝑞   𝑀,𝑞   ,𝑞   + ,𝑞   𝑋,𝑞   𝑌,𝑞   𝑞,𝑝
Allowed substitution hints:   𝐴(𝑝)   𝐶(𝑞,𝑝)   + (𝑝)   𝑈(𝑞,𝑝)   (𝑞,𝑝)   𝐾(𝑝)   (𝑞,𝑝)   𝑀(𝑝)   (𝑝)   𝑋(𝑝)   𝑌(𝑝)

Proof of Theorem osumcllem7N
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 simp11 1246 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ 𝑞 ∈ (𝑌𝑀)) → 𝐾 ∈ HL)
2 hllat 35153 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ Lat)
31, 2syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ 𝑞 ∈ (𝑌𝑀)) → 𝐾 ∈ Lat)
4 simp12 1247 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ 𝑞 ∈ (𝑌𝑀)) → 𝑋𝐴)
5 simp23 1251 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ 𝑞 ∈ (𝑌𝑀)) → 𝑝𝐴)
6 simp22 1250 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ 𝑞 ∈ (𝑌𝑀)) → 𝑋 ≠ ∅)
7 inss2 3977 . . . . . 6 (𝑌𝑀) ⊆ 𝑀
87sseli 3740 . . . . 5 (𝑞 ∈ (𝑌𝑀) → 𝑞𝑀)
983ad2ant3 1130 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ 𝑞 ∈ (𝑌𝑀)) → 𝑞𝑀)
10 osumcllem.m . . . 4 𝑀 = (𝑋 + {𝑝})
119, 10syl6eleq 2849 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ 𝑞 ∈ (𝑌𝑀)) → 𝑞 ∈ (𝑋 + {𝑝}))
12 osumcllem.l . . . 4 = (le‘𝐾)
13 osumcllem.j . . . 4 = (join‘𝐾)
14 osumcllem.a . . . 4 𝐴 = (Atoms‘𝐾)
15 osumcllem.p . . . 4 + = (+𝑃𝐾)
1612, 13, 14, 15elpaddatiN 35594 . . 3 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (𝑋 + {𝑝}))) → ∃𝑟𝑋 𝑞 (𝑟 𝑝))
173, 4, 5, 6, 11, 16syl32anc 1485 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ 𝑞 ∈ (𝑌𝑀)) → ∃𝑟𝑋 𝑞 (𝑟 𝑝))
18 simp11 1246 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ 𝑞 ∈ (𝑌𝑀)) ∧ 𝑟𝑋𝑞 (𝑟 𝑝)) → (𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴))
19 simp121 1390 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ 𝑞 ∈ (𝑌𝑀)) ∧ 𝑟𝑋𝑞 (𝑟 𝑝)) → 𝑋 ⊆ ( 𝑌))
20 simp123 1392 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ 𝑞 ∈ (𝑌𝑀)) ∧ 𝑟𝑋𝑞 (𝑟 𝑝)) → 𝑝𝐴)
21 simp2 1132 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ 𝑞 ∈ (𝑌𝑀)) ∧ 𝑟𝑋𝑞 (𝑟 𝑝)) → 𝑟𝑋)
22 inss1 3976 . . . . 5 (𝑌𝑀) ⊆ 𝑌
23 simp13 1248 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ 𝑞 ∈ (𝑌𝑀)) ∧ 𝑟𝑋𝑞 (𝑟 𝑝)) → 𝑞 ∈ (𝑌𝑀))
2422, 23sseldi 3742 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ 𝑞 ∈ (𝑌𝑀)) ∧ 𝑟𝑋𝑞 (𝑟 𝑝)) → 𝑞𝑌)
25 simp3 1133 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ 𝑞 ∈ (𝑌𝑀)) ∧ 𝑟𝑋𝑞 (𝑟 𝑝)) → 𝑞 (𝑟 𝑝))
26 osumcllem.o . . . . 5 = (⊥𝑃𝐾)
27 osumcllem.c . . . . 5 𝐶 = (PSubCl‘𝐾)
28 osumcllem.u . . . . 5 𝑈 = ( ‘( ‘(𝑋 + 𝑌)))
2912, 13, 14, 15, 26, 27, 10, 28osumcllem6N 35750 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑝𝐴) ∧ (𝑟𝑋𝑞𝑌𝑞 (𝑟 𝑝))) → 𝑝 ∈ (𝑋 + 𝑌))
3018, 19, 20, 21, 24, 25, 29syl123anc 1494 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ 𝑞 ∈ (𝑌𝑀)) ∧ 𝑟𝑋𝑞 (𝑟 𝑝)) → 𝑝 ∈ (𝑋 + 𝑌))
3130rexlimdv3a 3171 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ 𝑞 ∈ (𝑌𝑀)) → (∃𝑟𝑋 𝑞 (𝑟 𝑝) → 𝑝 ∈ (𝑋 + 𝑌)))
3217, 31mpd 15 1 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ 𝑞 ∈ (𝑌𝑀)) → 𝑝 ∈ (𝑋 + 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1072   = wceq 1632  wcel 2139  wne 2932  wrex 3051  cin 3714  wss 3715  c0 4058  {csn 4321   class class class wbr 4804  cfv 6049  (class class class)co 6813  lecple 16150  joincjn 17145  Latclat 17246  Atomscatm 35053  HLchlt 35140  +𝑃cpadd 35584  𝑃cpolN 35691  PSubClcpscN 35723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-riotaBAD 34742
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-1st 7333  df-2nd 7334  df-undef 7568  df-preset 17129  df-poset 17147  df-plt 17159  df-lub 17175  df-glb 17176  df-join 17177  df-meet 17178  df-p0 17240  df-p1 17241  df-lat 17247  df-clat 17309  df-oposet 34966  df-ol 34968  df-oml 34969  df-covers 35056  df-ats 35057  df-atl 35088  df-cvlat 35112  df-hlat 35141  df-pmap 35293  df-padd 35585  df-polarityN 35692
This theorem is referenced by:  osumcllem8N  35752
  Copyright terms: Public domain W3C validator