Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  osumcllem3N Structured version   Visualization version   GIF version

Theorem osumcllem3N 35759
Description: Lemma for osumclN 35768. (Contributed by NM, 23-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
osumcllem.l = (le‘𝐾)
osumcllem.j = (join‘𝐾)
osumcllem.a 𝐴 = (Atoms‘𝐾)
osumcllem.p + = (+𝑃𝐾)
osumcllem.o = (⊥𝑃𝐾)
osumcllem.c 𝐶 = (PSubCl‘𝐾)
osumcllem.m 𝑀 = (𝑋 + {𝑝})
osumcllem.u 𝑈 = ( ‘( ‘(𝑋 + 𝑌)))
Assertion
Ref Expression
osumcllem3N ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → (( 𝑋) ∩ 𝑈) = 𝑌)

Proof of Theorem osumcllem3N
StepHypRef Expression
1 incom 3954 . 2 (( 𝑋) ∩ 𝑈) = (𝑈 ∩ ( 𝑋))
2 osumcllem.u . . . . 5 𝑈 = ( ‘( ‘(𝑋 + 𝑌)))
3 simp1 1129 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → 𝐾 ∈ HL)
4 simp3 1131 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → 𝑋 ⊆ ( 𝑌))
5 osumcllem.a . . . . . . . . . . . 12 𝐴 = (Atoms‘𝐾)
6 osumcllem.c . . . . . . . . . . . 12 𝐶 = (PSubCl‘𝐾)
75, 6psubclssatN 35742 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑌𝐶) → 𝑌𝐴)
873adant3 1125 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → 𝑌𝐴)
9 osumcllem.o . . . . . . . . . . 11 = (⊥𝑃𝐾)
105, 9polssatN 35709 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑌𝐴) → ( 𝑌) ⊆ 𝐴)
113, 8, 10syl2anc 565 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → ( 𝑌) ⊆ 𝐴)
124, 11sstrd 3760 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → 𝑋𝐴)
13 osumcllem.p . . . . . . . . 9 + = (+𝑃𝐾)
145, 13, 9poldmj1N 35729 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → ( ‘(𝑋 + 𝑌)) = (( 𝑋) ∩ ( 𝑌)))
153, 12, 8, 14syl3anc 1475 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → ( ‘(𝑋 + 𝑌)) = (( 𝑋) ∩ ( 𝑌)))
16 incom 3954 . . . . . . 7 (( 𝑋) ∩ ( 𝑌)) = (( 𝑌) ∩ ( 𝑋))
1715, 16syl6eq 2820 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → ( ‘(𝑋 + 𝑌)) = (( 𝑌) ∩ ( 𝑋)))
1817fveq2d 6336 . . . . 5 ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → ( ‘( ‘(𝑋 + 𝑌))) = ( ‘(( 𝑌) ∩ ( 𝑋))))
192, 18syl5eq 2816 . . . 4 ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → 𝑈 = ( ‘(( 𝑌) ∩ ( 𝑋))))
2019ineq1d 3962 . . 3 ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → (𝑈 ∩ ( 𝑋)) = (( ‘(( 𝑌) ∩ ( 𝑋))) ∩ ( 𝑋)))
215, 9polcon2N 35720 . . . . 5 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) → 𝑌 ⊆ ( 𝑋))
228, 21syld3an2 1517 . . . 4 ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → 𝑌 ⊆ ( 𝑋))
235, 9poml5N 35755 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌 ⊆ ( 𝑋)) → (( ‘(( 𝑌) ∩ ( 𝑋))) ∩ ( 𝑋)) = ( ‘( 𝑌)))
243, 12, 22, 23syl3anc 1475 . . 3 ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → (( ‘(( 𝑌) ∩ ( 𝑋))) ∩ ( 𝑋)) = ( ‘( 𝑌)))
259, 6psubcli2N 35740 . . . 4 ((𝐾 ∈ HL ∧ 𝑌𝐶) → ( ‘( 𝑌)) = 𝑌)
26253adant3 1125 . . 3 ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → ( ‘( 𝑌)) = 𝑌)
2720, 24, 263eqtrd 2808 . 2 ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → (𝑈 ∩ ( 𝑋)) = 𝑌)
281, 27syl5eq 2816 1 ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → (( 𝑋) ∩ 𝑈) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1070   = wceq 1630  wcel 2144  cin 3720  wss 3721  {csn 4314  cfv 6031  (class class class)co 6792  lecple 16155  joincjn 17151  Atomscatm 35065  HLchlt 35152  +𝑃cpadd 35596  𝑃cpolN 35703  PSubClcpscN 35735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-riotaBAD 34754
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-iun 4654  df-iin 4655  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-1st 7314  df-2nd 7315  df-undef 7550  df-preset 17135  df-poset 17153  df-plt 17165  df-lub 17181  df-glb 17182  df-join 17183  df-meet 17184  df-p0 17246  df-p1 17247  df-lat 17253  df-clat 17315  df-oposet 34978  df-ol 34980  df-oml 34981  df-covers 35068  df-ats 35069  df-atl 35100  df-cvlat 35124  df-hlat 35153  df-psubsp 35304  df-pmap 35305  df-padd 35597  df-polarityN 35704  df-psubclN 35736
This theorem is referenced by:  osumcllem9N  35765
  Copyright terms: Public domain W3C validator