![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > osumcllem3N | Structured version Visualization version GIF version |
Description: Lemma for osumclN 35768. (Contributed by NM, 23-Mar-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
osumcllem.l | ⊢ ≤ = (le‘𝐾) |
osumcllem.j | ⊢ ∨ = (join‘𝐾) |
osumcllem.a | ⊢ 𝐴 = (Atoms‘𝐾) |
osumcllem.p | ⊢ + = (+𝑃‘𝐾) |
osumcllem.o | ⊢ ⊥ = (⊥𝑃‘𝐾) |
osumcllem.c | ⊢ 𝐶 = (PSubCl‘𝐾) |
osumcllem.m | ⊢ 𝑀 = (𝑋 + {𝑝}) |
osumcllem.u | ⊢ 𝑈 = ( ⊥ ‘( ⊥ ‘(𝑋 + 𝑌))) |
Ref | Expression |
---|---|
osumcllem3N | ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → (( ⊥ ‘𝑋) ∩ 𝑈) = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 3954 | . 2 ⊢ (( ⊥ ‘𝑋) ∩ 𝑈) = (𝑈 ∩ ( ⊥ ‘𝑋)) | |
2 | osumcllem.u | . . . . 5 ⊢ 𝑈 = ( ⊥ ‘( ⊥ ‘(𝑋 + 𝑌))) | |
3 | simp1 1129 | . . . . . . . 8 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → 𝐾 ∈ HL) | |
4 | simp3 1131 | . . . . . . . . 9 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → 𝑋 ⊆ ( ⊥ ‘𝑌)) | |
5 | osumcllem.a | . . . . . . . . . . . 12 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | osumcllem.c | . . . . . . . . . . . 12 ⊢ 𝐶 = (PSubCl‘𝐾) | |
7 | 5, 6 | psubclssatN 35742 | . . . . . . . . . . 11 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶) → 𝑌 ⊆ 𝐴) |
8 | 7 | 3adant3 1125 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → 𝑌 ⊆ 𝐴) |
9 | osumcllem.o | . . . . . . . . . . 11 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
10 | 5, 9 | polssatN 35709 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴) → ( ⊥ ‘𝑌) ⊆ 𝐴) |
11 | 3, 8, 10 | syl2anc 565 | . . . . . . . . 9 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → ( ⊥ ‘𝑌) ⊆ 𝐴) |
12 | 4, 11 | sstrd 3760 | . . . . . . . 8 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → 𝑋 ⊆ 𝐴) |
13 | osumcllem.p | . . . . . . . . 9 ⊢ + = (+𝑃‘𝐾) | |
14 | 5, 13, 9 | poldmj1N 35729 | . . . . . . . 8 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → ( ⊥ ‘(𝑋 + 𝑌)) = (( ⊥ ‘𝑋) ∩ ( ⊥ ‘𝑌))) |
15 | 3, 12, 8, 14 | syl3anc 1475 | . . . . . . 7 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → ( ⊥ ‘(𝑋 + 𝑌)) = (( ⊥ ‘𝑋) ∩ ( ⊥ ‘𝑌))) |
16 | incom 3954 | . . . . . . 7 ⊢ (( ⊥ ‘𝑋) ∩ ( ⊥ ‘𝑌)) = (( ⊥ ‘𝑌) ∩ ( ⊥ ‘𝑋)) | |
17 | 15, 16 | syl6eq 2820 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → ( ⊥ ‘(𝑋 + 𝑌)) = (( ⊥ ‘𝑌) ∩ ( ⊥ ‘𝑋))) |
18 | 17 | fveq2d 6336 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → ( ⊥ ‘( ⊥ ‘(𝑋 + 𝑌))) = ( ⊥ ‘(( ⊥ ‘𝑌) ∩ ( ⊥ ‘𝑋)))) |
19 | 2, 18 | syl5eq 2816 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → 𝑈 = ( ⊥ ‘(( ⊥ ‘𝑌) ∩ ( ⊥ ‘𝑋)))) |
20 | 19 | ineq1d 3962 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → (𝑈 ∩ ( ⊥ ‘𝑋)) = (( ⊥ ‘(( ⊥ ‘𝑌) ∩ ( ⊥ ‘𝑋))) ∩ ( ⊥ ‘𝑋))) |
21 | 5, 9 | polcon2N 35720 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → 𝑌 ⊆ ( ⊥ ‘𝑋)) |
22 | 8, 21 | syld3an2 1517 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → 𝑌 ⊆ ( ⊥ ‘𝑋)) |
23 | 5, 9 | poml5N 35755 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ ( ⊥ ‘𝑋)) → (( ⊥ ‘(( ⊥ ‘𝑌) ∩ ( ⊥ ‘𝑋))) ∩ ( ⊥ ‘𝑋)) = ( ⊥ ‘( ⊥ ‘𝑌))) |
24 | 3, 12, 22, 23 | syl3anc 1475 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → (( ⊥ ‘(( ⊥ ‘𝑌) ∩ ( ⊥ ‘𝑋))) ∩ ( ⊥ ‘𝑋)) = ( ⊥ ‘( ⊥ ‘𝑌))) |
25 | 9, 6 | psubcli2N 35740 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶) → ( ⊥ ‘( ⊥ ‘𝑌)) = 𝑌) |
26 | 25 | 3adant3 1125 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → ( ⊥ ‘( ⊥ ‘𝑌)) = 𝑌) |
27 | 20, 24, 26 | 3eqtrd 2808 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → (𝑈 ∩ ( ⊥ ‘𝑋)) = 𝑌) |
28 | 1, 27 | syl5eq 2816 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → (( ⊥ ‘𝑋) ∩ 𝑈) = 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1070 = wceq 1630 ∈ wcel 2144 ∩ cin 3720 ⊆ wss 3721 {csn 4314 ‘cfv 6031 (class class class)co 6792 lecple 16155 joincjn 17151 Atomscatm 35065 HLchlt 35152 +𝑃cpadd 35596 ⊥𝑃cpolN 35703 PSubClcpscN 35735 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-riotaBAD 34754 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-iun 4654 df-iin 4655 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-1st 7314 df-2nd 7315 df-undef 7550 df-preset 17135 df-poset 17153 df-plt 17165 df-lub 17181 df-glb 17182 df-join 17183 df-meet 17184 df-p0 17246 df-p1 17247 df-lat 17253 df-clat 17315 df-oposet 34978 df-ol 34980 df-oml 34981 df-covers 35068 df-ats 35069 df-atl 35100 df-cvlat 35124 df-hlat 35153 df-psubsp 35304 df-pmap 35305 df-padd 35597 df-polarityN 35704 df-psubclN 35736 |
This theorem is referenced by: osumcllem9N 35765 |
Copyright terms: Public domain | W3C validator |