Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  osumcllem10N Structured version   Visualization version   GIF version

Theorem osumcllem10N 35773
 Description: Lemma for osumclN 35775. Contradict osumcllem9N 35772. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
osumcllem.l = (le‘𝐾)
osumcllem.j = (join‘𝐾)
osumcllem.a 𝐴 = (Atoms‘𝐾)
osumcllem.p + = (+𝑃𝐾)
osumcllem.o = (⊥𝑃𝐾)
osumcllem.c 𝐶 = (PSubCl‘𝐾)
osumcllem.m 𝑀 = (𝑋 + {𝑝})
osumcllem.u 𝑈 = ( ‘( ‘(𝑋 + 𝑌)))
Assertion
Ref Expression
osumcllem10N (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑀𝑋)

Proof of Theorem osumcllem10N
StepHypRef Expression
1 simp11 1245 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝐾 ∈ HL)
2 simp2 1131 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑝𝐴)
32snssd 4475 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → {𝑝} ⊆ 𝐴)
4 simp12 1246 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑋𝐴)
5 osumcllem.a . . . . . 6 𝐴 = (Atoms‘𝐾)
6 osumcllem.p . . . . . 6 + = (+𝑃𝐾)
75, 6sspadd2 35624 . . . . 5 ((𝐾 ∈ HL ∧ {𝑝} ⊆ 𝐴𝑋𝐴) → {𝑝} ⊆ (𝑋 + {𝑝}))
81, 3, 4, 7syl3anc 1476 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → {𝑝} ⊆ (𝑋 + {𝑝}))
9 vex 3354 . . . . 5 𝑝 ∈ V
109snss 4451 . . . 4 (𝑝 ∈ (𝑋 + {𝑝}) ↔ {𝑝} ⊆ (𝑋 + {𝑝}))
118, 10sylibr 224 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑝 ∈ (𝑋 + {𝑝}))
12 osumcllem.m . . 3 𝑀 = (𝑋 + {𝑝})
1311, 12syl6eleqr 2861 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑝𝑀)
145, 6sspadd1 35623 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → 𝑋 ⊆ (𝑋 + 𝑌))
15143ad2ant1 1127 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑋 ⊆ (𝑋 + 𝑌))
16 simp3 1132 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → ¬ 𝑝 ∈ (𝑋 + 𝑌))
1715, 16ssneldd 3755 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → ¬ 𝑝𝑋)
18 nelne1 3039 . 2 ((𝑝𝑀 ∧ ¬ 𝑝𝑋) → 𝑀𝑋)
1913, 17, 18syl2anc 573 1 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑀𝑋)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ w3a 1071   = wceq 1631   ∈ wcel 2145   ≠ wne 2943   ⊆ wss 3723  {csn 4316  ‘cfv 6031  (class class class)co 6793  lecple 16156  joincjn 17152  Atomscatm 35072  HLchlt 35159  +𝑃cpadd 35603  ⊥𝑃cpolN 35710  PSubClcpscN 35742 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-1st 7315  df-2nd 7316  df-padd 35604 This theorem is referenced by:  osumcllem11N  35774
 Copyright terms: Public domain W3C validator