MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ostth3 Structured version   Visualization version   GIF version

Theorem ostth3 25526
Description: - Lemma for ostth 25527: p-adic case. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
qrng.q 𝑄 = (ℂflds ℚ)
qabsabv.a 𝐴 = (AbsVal‘𝑄)
padic.j 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))
ostth.k 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1))
ostth.1 (𝜑𝐹𝐴)
ostth3.2 (𝜑 → ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛))
ostth3.3 (𝜑𝑃 ∈ ℙ)
ostth3.4 (𝜑 → (𝐹𝑃) < 1)
ostth3.5 𝑅 = -((log‘(𝐹𝑃)) / (log‘𝑃))
ostth3.6 𝑆 = if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃))
Assertion
Ref Expression
ostth3 (𝜑 → ∃𝑎 ∈ ℝ+ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑎)))
Distinct variable groups:   𝑛,𝑝,𝑦   𝑛,𝐾   𝑥,𝑛,𝑎,𝑝,𝑞,𝑦,𝜑   𝐽,𝑎,𝑝,𝑦   𝑆,𝑎   𝐴,𝑎,𝑛,𝑝,𝑞,𝑥,𝑦   𝑄,𝑛,𝑥,𝑦   𝐹,𝑎,𝑛,𝑝,𝑞,𝑦   𝑃,𝑎,𝑝,𝑞,𝑥,𝑦   𝑅,𝑎,𝑝,𝑞,𝑦   𝑥,𝐹
Allowed substitution hints:   𝑃(𝑛)   𝑄(𝑞,𝑝,𝑎)   𝑅(𝑥,𝑛)   𝑆(𝑥,𝑦,𝑛,𝑞,𝑝)   𝐽(𝑥,𝑛,𝑞)   𝐾(𝑥,𝑦,𝑞,𝑝,𝑎)

Proof of Theorem ostth3
Dummy variables 𝑘 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ostth3.5 . . . 4 𝑅 = -((log‘(𝐹𝑃)) / (log‘𝑃))
2 ostth.1 . . . . . . . . 9 (𝜑𝐹𝐴)
3 ostth3.3 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℙ)
4 prmuz2 15610 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
53, 4syl 17 . . . . . . . . . . . 12 (𝜑𝑃 ∈ (ℤ‘2))
6 eluz2b2 11954 . . . . . . . . . . . 12 (𝑃 ∈ (ℤ‘2) ↔ (𝑃 ∈ ℕ ∧ 1 < 𝑃))
75, 6sylib 208 . . . . . . . . . . 11 (𝜑 → (𝑃 ∈ ℕ ∧ 1 < 𝑃))
87simpld 477 . . . . . . . . . 10 (𝜑𝑃 ∈ ℕ)
9 nnq 11994 . . . . . . . . . 10 (𝑃 ∈ ℕ → 𝑃 ∈ ℚ)
108, 9syl 17 . . . . . . . . 9 (𝜑𝑃 ∈ ℚ)
11 qabsabv.a . . . . . . . . . 10 𝐴 = (AbsVal‘𝑄)
12 qrng.q . . . . . . . . . . 11 𝑄 = (ℂflds ℚ)
1312qrngbas 25507 . . . . . . . . . 10 ℚ = (Base‘𝑄)
1411, 13abvcl 19026 . . . . . . . . 9 ((𝐹𝐴𝑃 ∈ ℚ) → (𝐹𝑃) ∈ ℝ)
152, 10, 14syl2anc 696 . . . . . . . 8 (𝜑 → (𝐹𝑃) ∈ ℝ)
168nnne0d 11257 . . . . . . . . 9 (𝜑𝑃 ≠ 0)
1712qrng0 25509 . . . . . . . . . 10 0 = (0g𝑄)
1811, 13, 17abvgt0 19030 . . . . . . . . 9 ((𝐹𝐴𝑃 ∈ ℚ ∧ 𝑃 ≠ 0) → 0 < (𝐹𝑃))
192, 10, 16, 18syl3anc 1477 . . . . . . . 8 (𝜑 → 0 < (𝐹𝑃))
2015, 19elrpd 12062 . . . . . . 7 (𝜑 → (𝐹𝑃) ∈ ℝ+)
2120relogcld 24568 . . . . . 6 (𝜑 → (log‘(𝐹𝑃)) ∈ ℝ)
228nnred 11227 . . . . . . 7 (𝜑𝑃 ∈ ℝ)
237simprd 482 . . . . . . 7 (𝜑 → 1 < 𝑃)
2422, 23rplogcld 24574 . . . . . 6 (𝜑 → (log‘𝑃) ∈ ℝ+)
2521, 24rerpdivcld 12096 . . . . 5 (𝜑 → ((log‘(𝐹𝑃)) / (log‘𝑃)) ∈ ℝ)
2625renegcld 10649 . . . 4 (𝜑 → -((log‘(𝐹𝑃)) / (log‘𝑃)) ∈ ℝ)
271, 26syl5eqel 2843 . . 3 (𝜑𝑅 ∈ ℝ)
28 ostth3.4 . . . . . . . . 9 (𝜑 → (𝐹𝑃) < 1)
29 1rp 12029 . . . . . . . . . 10 1 ∈ ℝ+
30 logltb 24545 . . . . . . . . . 10 (((𝐹𝑃) ∈ ℝ+ ∧ 1 ∈ ℝ+) → ((𝐹𝑃) < 1 ↔ (log‘(𝐹𝑃)) < (log‘1)))
3120, 29, 30sylancl 697 . . . . . . . . 9 (𝜑 → ((𝐹𝑃) < 1 ↔ (log‘(𝐹𝑃)) < (log‘1)))
3228, 31mpbid 222 . . . . . . . 8 (𝜑 → (log‘(𝐹𝑃)) < (log‘1))
33 log1 24531 . . . . . . . 8 (log‘1) = 0
3432, 33syl6breq 4845 . . . . . . 7 (𝜑 → (log‘(𝐹𝑃)) < 0)
3524rpcnd 12067 . . . . . . . 8 (𝜑 → (log‘𝑃) ∈ ℂ)
3635mul01d 10427 . . . . . . 7 (𝜑 → ((log‘𝑃) · 0) = 0)
3734, 36breqtrrd 4832 . . . . . 6 (𝜑 → (log‘(𝐹𝑃)) < ((log‘𝑃) · 0))
38 0red 10233 . . . . . . 7 (𝜑 → 0 ∈ ℝ)
3921, 38, 24ltdivmuld 12116 . . . . . 6 (𝜑 → (((log‘(𝐹𝑃)) / (log‘𝑃)) < 0 ↔ (log‘(𝐹𝑃)) < ((log‘𝑃) · 0)))
4037, 39mpbird 247 . . . . 5 (𝜑 → ((log‘(𝐹𝑃)) / (log‘𝑃)) < 0)
4125lt0neg1d 10789 . . . . 5 (𝜑 → (((log‘(𝐹𝑃)) / (log‘𝑃)) < 0 ↔ 0 < -((log‘(𝐹𝑃)) / (log‘𝑃))))
4240, 41mpbid 222 . . . 4 (𝜑 → 0 < -((log‘(𝐹𝑃)) / (log‘𝑃)))
4342, 1syl6breqr 4846 . . 3 (𝜑 → 0 < 𝑅)
4427, 43elrpd 12062 . 2 (𝜑𝑅 ∈ ℝ+)
45 padic.j . . . . 5 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))
4612, 11, 45padicabvcxp 25520 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅)) ∈ 𝐴)
473, 44, 46syl2anc 696 . . 3 (𝜑 → (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅)) ∈ 𝐴)
48 fveq2 6352 . . . . . . . . . 10 (𝑦 = 𝑃 → ((𝐽𝑃)‘𝑦) = ((𝐽𝑃)‘𝑃))
4948oveq1d 6828 . . . . . . . . 9 (𝑦 = 𝑃 → (((𝐽𝑃)‘𝑦)↑𝑐𝑅) = (((𝐽𝑃)‘𝑃)↑𝑐𝑅))
50 eqid 2760 . . . . . . . . 9 (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅)) = (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))
51 ovex 6841 . . . . . . . . 9 (((𝐽𝑃)‘𝑃)↑𝑐𝑅) ∈ V
5249, 50, 51fvmpt 6444 . . . . . . . 8 (𝑃 ∈ ℚ → ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑃) = (((𝐽𝑃)‘𝑃)↑𝑐𝑅))
5310, 52syl 17 . . . . . . 7 (𝜑 → ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑃) = (((𝐽𝑃)‘𝑃)↑𝑐𝑅))
5445padicval 25505 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑃 ∈ ℚ) → ((𝐽𝑃)‘𝑃) = if(𝑃 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑃))))
553, 10, 54syl2anc 696 . . . . . . . . 9 (𝜑 → ((𝐽𝑃)‘𝑃) = if(𝑃 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑃))))
5616neneqd 2937 . . . . . . . . . 10 (𝜑 → ¬ 𝑃 = 0)
5756iffalsed 4241 . . . . . . . . 9 (𝜑 → if(𝑃 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑃))) = (𝑃↑-(𝑃 pCnt 𝑃)))
588nncnd 11228 . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ ℂ)
5958exp1d 13197 . . . . . . . . . . . . . 14 (𝜑 → (𝑃↑1) = 𝑃)
6059oveq2d 6829 . . . . . . . . . . . . 13 (𝜑 → (𝑃 pCnt (𝑃↑1)) = (𝑃 pCnt 𝑃))
61 1z 11599 . . . . . . . . . . . . . 14 1 ∈ ℤ
62 pcid 15779 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 1 ∈ ℤ) → (𝑃 pCnt (𝑃↑1)) = 1)
633, 61, 62sylancl 697 . . . . . . . . . . . . 13 (𝜑 → (𝑃 pCnt (𝑃↑1)) = 1)
6460, 63eqtr3d 2796 . . . . . . . . . . . 12 (𝜑 → (𝑃 pCnt 𝑃) = 1)
6564negeqd 10467 . . . . . . . . . . 11 (𝜑 → -(𝑃 pCnt 𝑃) = -1)
6665oveq2d 6829 . . . . . . . . . 10 (𝜑 → (𝑃↑-(𝑃 pCnt 𝑃)) = (𝑃↑-1))
67 neg1z 11605 . . . . . . . . . . . 12 -1 ∈ ℤ
6867a1i 11 . . . . . . . . . . 11 (𝜑 → -1 ∈ ℤ)
6958, 16, 68cxpexpzd 24656 . . . . . . . . . 10 (𝜑 → (𝑃𝑐-1) = (𝑃↑-1))
7066, 69eqtr4d 2797 . . . . . . . . 9 (𝜑 → (𝑃↑-(𝑃 pCnt 𝑃)) = (𝑃𝑐-1))
7155, 57, 703eqtrd 2798 . . . . . . . 8 (𝜑 → ((𝐽𝑃)‘𝑃) = (𝑃𝑐-1))
7271oveq1d 6828 . . . . . . 7 (𝜑 → (((𝐽𝑃)‘𝑃)↑𝑐𝑅) = ((𝑃𝑐-1)↑𝑐𝑅))
7327recnd 10260 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℂ)
7473mulm1d 10674 . . . . . . . . . 10 (𝜑 → (-1 · 𝑅) = -𝑅)
751negeqi 10466 . . . . . . . . . . 11 -𝑅 = --((log‘(𝐹𝑃)) / (log‘𝑃))
7625recnd 10260 . . . . . . . . . . . 12 (𝜑 → ((log‘(𝐹𝑃)) / (log‘𝑃)) ∈ ℂ)
7776negnegd 10575 . . . . . . . . . . 11 (𝜑 → --((log‘(𝐹𝑃)) / (log‘𝑃)) = ((log‘(𝐹𝑃)) / (log‘𝑃)))
7875, 77syl5eq 2806 . . . . . . . . . 10 (𝜑 → -𝑅 = ((log‘(𝐹𝑃)) / (log‘𝑃)))
7974, 78eqtrd 2794 . . . . . . . . 9 (𝜑 → (-1 · 𝑅) = ((log‘(𝐹𝑃)) / (log‘𝑃)))
8079oveq2d 6829 . . . . . . . 8 (𝜑 → (𝑃𝑐(-1 · 𝑅)) = (𝑃𝑐((log‘(𝐹𝑃)) / (log‘𝑃))))
818nnrpd 12063 . . . . . . . . 9 (𝜑𝑃 ∈ ℝ+)
82 neg1rr 11317 . . . . . . . . . 10 -1 ∈ ℝ
8382a1i 11 . . . . . . . . 9 (𝜑 → -1 ∈ ℝ)
8481, 83, 73cxpmuld 24679 . . . . . . . 8 (𝜑 → (𝑃𝑐(-1 · 𝑅)) = ((𝑃𝑐-1)↑𝑐𝑅))
8558, 16, 76cxpefd 24657 . . . . . . . . 9 (𝜑 → (𝑃𝑐((log‘(𝐹𝑃)) / (log‘𝑃))) = (exp‘(((log‘(𝐹𝑃)) / (log‘𝑃)) · (log‘𝑃))))
8621recnd 10260 . . . . . . . . . . 11 (𝜑 → (log‘(𝐹𝑃)) ∈ ℂ)
8724rpne0d 12070 . . . . . . . . . . 11 (𝜑 → (log‘𝑃) ≠ 0)
8886, 35, 87divcan1d 10994 . . . . . . . . . 10 (𝜑 → (((log‘(𝐹𝑃)) / (log‘𝑃)) · (log‘𝑃)) = (log‘(𝐹𝑃)))
8988fveq2d 6356 . . . . . . . . 9 (𝜑 → (exp‘(((log‘(𝐹𝑃)) / (log‘𝑃)) · (log‘𝑃))) = (exp‘(log‘(𝐹𝑃))))
9020reeflogd 24569 . . . . . . . . 9 (𝜑 → (exp‘(log‘(𝐹𝑃))) = (𝐹𝑃))
9185, 89, 903eqtrd 2798 . . . . . . . 8 (𝜑 → (𝑃𝑐((log‘(𝐹𝑃)) / (log‘𝑃))) = (𝐹𝑃))
9280, 84, 913eqtr3d 2802 . . . . . . 7 (𝜑 → ((𝑃𝑐-1)↑𝑐𝑅) = (𝐹𝑃))
9353, 72, 923eqtrrd 2799 . . . . . 6 (𝜑 → (𝐹𝑃) = ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑃))
94 fveq2 6352 . . . . . . 7 (𝑃 = 𝑝 → (𝐹𝑃) = (𝐹𝑝))
95 fveq2 6352 . . . . . . 7 (𝑃 = 𝑝 → ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑃) = ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑝))
9694, 95eqeq12d 2775 . . . . . 6 (𝑃 = 𝑝 → ((𝐹𝑃) = ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑃) ↔ (𝐹𝑝) = ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑝)))
9793, 96syl5ibcom 235 . . . . 5 (𝜑 → (𝑃 = 𝑝 → (𝐹𝑝) = ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑝)))
9897adantr 472 . . . 4 ((𝜑𝑝 ∈ ℙ) → (𝑃 = 𝑝 → (𝐹𝑝) = ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑝)))
99 prmnn 15590 . . . . . . . . 9 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
10099ad2antlr 765 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → 𝑝 ∈ ℕ)
101 nnq 11994 . . . . . . . 8 (𝑝 ∈ ℕ → 𝑝 ∈ ℚ)
102100, 101syl 17 . . . . . . 7 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → 𝑝 ∈ ℚ)
103 fveq2 6352 . . . . . . . . 9 (𝑦 = 𝑝 → ((𝐽𝑃)‘𝑦) = ((𝐽𝑃)‘𝑝))
104103oveq1d 6828 . . . . . . . 8 (𝑦 = 𝑝 → (((𝐽𝑃)‘𝑦)↑𝑐𝑅) = (((𝐽𝑃)‘𝑝)↑𝑐𝑅))
105 ovex 6841 . . . . . . . 8 (((𝐽𝑃)‘𝑝)↑𝑐𝑅) ∈ V
106104, 50, 105fvmpt 6444 . . . . . . 7 (𝑝 ∈ ℚ → ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑝) = (((𝐽𝑃)‘𝑝)↑𝑐𝑅))
107102, 106syl 17 . . . . . 6 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑝) = (((𝐽𝑃)‘𝑝)↑𝑐𝑅))
10873ad2antrr 764 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → 𝑅 ∈ ℂ)
1091081cxpd 24652 . . . . . . 7 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → (1↑𝑐𝑅) = 1)
1103ad2antrr 764 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → 𝑃 ∈ ℙ)
11145padicval 25505 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑝 ∈ ℚ) → ((𝐽𝑃)‘𝑝) = if(𝑝 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑝))))
112110, 102, 111syl2anc 696 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → ((𝐽𝑃)‘𝑝) = if(𝑝 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑝))))
113100nnne0d 11257 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → 𝑝 ≠ 0)
114113neneqd 2937 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → ¬ 𝑝 = 0)
115114iffalsed 4241 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → if(𝑝 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑝))) = (𝑃↑-(𝑃 pCnt 𝑝)))
116 pceq0 15777 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ 𝑝 ∈ ℕ) → ((𝑃 pCnt 𝑝) = 0 ↔ ¬ 𝑃𝑝))
1173, 99, 116syl2an 495 . . . . . . . . . . . . . . 15 ((𝜑𝑝 ∈ ℙ) → ((𝑃 pCnt 𝑝) = 0 ↔ ¬ 𝑃𝑝))
118 dvdsprm 15617 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ (ℤ‘2) ∧ 𝑝 ∈ ℙ) → (𝑃𝑝𝑃 = 𝑝))
1195, 118sylan 489 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ ℙ) → (𝑃𝑝𝑃 = 𝑝))
120119necon3bbid 2969 . . . . . . . . . . . . . . 15 ((𝜑𝑝 ∈ ℙ) → (¬ 𝑃𝑝𝑃𝑝))
121117, 120bitrd 268 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ ℙ) → ((𝑃 pCnt 𝑝) = 0 ↔ 𝑃𝑝))
122121biimpar 503 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → (𝑃 pCnt 𝑝) = 0)
123122negeqd 10467 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → -(𝑃 pCnt 𝑝) = -0)
124 neg0 10519 . . . . . . . . . . . 12 -0 = 0
125123, 124syl6eq 2810 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → -(𝑃 pCnt 𝑝) = 0)
126125oveq2d 6829 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → (𝑃↑-(𝑃 pCnt 𝑝)) = (𝑃↑0))
12758ad2antrr 764 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → 𝑃 ∈ ℂ)
128127exp0d 13196 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → (𝑃↑0) = 1)
129126, 128eqtrd 2794 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → (𝑃↑-(𝑃 pCnt 𝑝)) = 1)
130112, 115, 1293eqtrd 2798 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → ((𝐽𝑃)‘𝑝) = 1)
131130oveq1d 6828 . . . . . . 7 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → (((𝐽𝑃)‘𝑝)↑𝑐𝑅) = (1↑𝑐𝑅))
132 2re 11282 . . . . . . . . . . . . 13 2 ∈ ℝ
133132a1i 11 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → 2 ∈ ℝ)
134 ostth3.6 . . . . . . . . . . . . . 14 𝑆 = if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃))
1352ad2antrr 764 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → 𝐹𝐴)
13611, 13abvcl 19026 . . . . . . . . . . . . . . . . . 18 ((𝐹𝐴𝑝 ∈ ℚ) → (𝐹𝑝) ∈ ℝ)
137135, 102, 136syl2anc 696 . . . . . . . . . . . . . . . . 17 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → (𝐹𝑝) ∈ ℝ)
13811, 13, 17abvgt0 19030 . . . . . . . . . . . . . . . . . 18 ((𝐹𝐴𝑝 ∈ ℚ ∧ 𝑝 ≠ 0) → 0 < (𝐹𝑝))
139135, 102, 113, 138syl3anc 1477 . . . . . . . . . . . . . . . . 17 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → 0 < (𝐹𝑝))
140137, 139elrpd 12062 . . . . . . . . . . . . . . . 16 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → (𝐹𝑝) ∈ ℝ+)
141140adantrr 755 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → (𝐹𝑝) ∈ ℝ+)
14220ad2antrr 764 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → (𝐹𝑃) ∈ ℝ+)
143141, 142ifcld 4275 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃)) ∈ ℝ+)
144134, 143syl5eqel 2843 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → 𝑆 ∈ ℝ+)
145144rprecred 12076 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → (1 / 𝑆) ∈ ℝ)
146 simprr 813 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → (𝐹𝑝) < 1)
14728ad2antrr 764 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → (𝐹𝑃) < 1)
148 breq1 4807 . . . . . . . . . . . . . . . 16 ((𝐹𝑝) = if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃)) → ((𝐹𝑝) < 1 ↔ if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃)) < 1))
149 breq1 4807 . . . . . . . . . . . . . . . 16 ((𝐹𝑃) = if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃)) → ((𝐹𝑃) < 1 ↔ if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃)) < 1))
150148, 149ifboth 4268 . . . . . . . . . . . . . . 15 (((𝐹𝑝) < 1 ∧ (𝐹𝑃) < 1) → if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃)) < 1)
151146, 147, 150syl2anc 696 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃)) < 1)
152134, 151syl5eqbr 4839 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → 𝑆 < 1)
153144reclt1d 12078 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → (𝑆 < 1 ↔ 1 < (1 / 𝑆)))
154152, 153mpbid 222 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → 1 < (1 / 𝑆))
155 expnbnd 13187 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ (1 / 𝑆) ∈ ℝ ∧ 1 < (1 / 𝑆)) → ∃𝑘 ∈ ℕ 2 < ((1 / 𝑆)↑𝑘))
156133, 145, 154, 155syl3anc 1477 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → ∃𝑘 ∈ ℕ 2 < ((1 / 𝑆)↑𝑘))
157144rpcnd 12067 . . . . . . . . . . . . . . . . 17 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → 𝑆 ∈ ℂ)
158157adantr 472 . . . . . . . . . . . . . . . 16 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → 𝑆 ∈ ℂ)
159144rpne0d 12070 . . . . . . . . . . . . . . . . 17 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → 𝑆 ≠ 0)
160159adantr 472 . . . . . . . . . . . . . . . 16 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → 𝑆 ≠ 0)
161 nnz 11591 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
162161adantl 473 . . . . . . . . . . . . . . . 16 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℤ)
163158, 160, 162exprecd 13210 . . . . . . . . . . . . . . 15 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → ((1 / 𝑆)↑𝑘) = (1 / (𝑆𝑘)))
1642ad3antrrr 768 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → 𝐹𝐴)
165 ax-1ne0 10197 . . . . . . . . . . . . . . . . . 18 1 ≠ 0
16612qrng1 25510 . . . . . . . . . . . . . . . . . . 19 1 = (1r𝑄)
16711, 166, 17abv1z 19034 . . . . . . . . . . . . . . . . . 18 ((𝐹𝐴 ∧ 1 ≠ 0) → (𝐹‘1) = 1)
168164, 165, 167sylancl 697 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (𝐹‘1) = 1)
1698ad2antrr 764 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → 𝑃 ∈ ℕ)
170 nnnn0 11491 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
171 nnexpcl 13067 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑃𝑘) ∈ ℕ)
172169, 170, 171syl2an 495 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (𝑃𝑘) ∈ ℕ)
173172nnzd 11673 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (𝑃𝑘) ∈ ℤ)
17499ad2antlr 765 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → 𝑝 ∈ ℕ)
175 nnexpcl 13067 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑝𝑘) ∈ ℕ)
176174, 170, 175syl2an 495 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (𝑝𝑘) ∈ ℕ)
177176nnzd 11673 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (𝑝𝑘) ∈ ℤ)
178 bezout 15462 . . . . . . . . . . . . . . . . . . 19 (((𝑃𝑘) ∈ ℤ ∧ (𝑝𝑘) ∈ ℤ) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ((𝑃𝑘) gcd (𝑝𝑘)) = (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏)))
179173, 177, 178syl2anc 696 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ((𝑃𝑘) gcd (𝑝𝑘)) = (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏)))
180 simprl 811 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → 𝑃𝑝)
1813ad2antrr 764 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → 𝑃 ∈ ℙ)
182 simplr 809 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → 𝑝 ∈ ℙ)
183 prmrp 15626 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑃 ∈ ℙ ∧ 𝑝 ∈ ℙ) → ((𝑃 gcd 𝑝) = 1 ↔ 𝑃𝑝))
184181, 182, 183syl2anc 696 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → ((𝑃 gcd 𝑝) = 1 ↔ 𝑃𝑝))
185180, 184mpbird 247 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → (𝑃 gcd 𝑝) = 1)
186185adantr 472 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (𝑃 gcd 𝑝) = 1)
187169adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → 𝑃 ∈ ℕ)
188174adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → 𝑝 ∈ ℕ)
189 simpr 479 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
190 rppwr 15479 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑃 ∈ ℕ ∧ 𝑝 ∈ ℕ ∧ 𝑘 ∈ ℕ) → ((𝑃 gcd 𝑝) = 1 → ((𝑃𝑘) gcd (𝑝𝑘)) = 1))
191187, 188, 189, 190syl3anc 1477 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → ((𝑃 gcd 𝑝) = 1 → ((𝑃𝑘) gcd (𝑝𝑘)) = 1))
192186, 191mpd 15 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → ((𝑃𝑘) gcd (𝑝𝑘)) = 1)
193192adantrr 755 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝑃𝑘) gcd (𝑝𝑘)) = 1)
194193eqeq1d 2762 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝑃𝑘) gcd (𝑝𝑘)) = (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏)) ↔ 1 = (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏))))
1952ad3antrrr 768 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 𝐹𝐴)
196172adantrr 755 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝑃𝑘) ∈ ℕ)
197 nnq 11994 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑃𝑘) ∈ ℕ → (𝑃𝑘) ∈ ℚ)
198196, 197syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝑃𝑘) ∈ ℚ)
199 simprrl 823 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 𝑎 ∈ ℤ)
200 zq 11987 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 ∈ ℤ → 𝑎 ∈ ℚ)
201199, 200syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 𝑎 ∈ ℚ)
202 qmulcl 11999 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑃𝑘) ∈ ℚ ∧ 𝑎 ∈ ℚ) → ((𝑃𝑘) · 𝑎) ∈ ℚ)
203198, 201, 202syl2anc 696 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝑃𝑘) · 𝑎) ∈ ℚ)
204176adantrr 755 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝑝𝑘) ∈ ℕ)
205 nnq 11994 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑝𝑘) ∈ ℕ → (𝑝𝑘) ∈ ℚ)
206204, 205syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝑝𝑘) ∈ ℚ)
207 simprrr 824 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 𝑏 ∈ ℤ)
208 zq 11987 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑏 ∈ ℤ → 𝑏 ∈ ℚ)
209207, 208syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 𝑏 ∈ ℚ)
210 qmulcl 11999 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑝𝑘) ∈ ℚ ∧ 𝑏 ∈ ℚ) → ((𝑝𝑘) · 𝑏) ∈ ℚ)
211206, 209, 210syl2anc 696 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝑝𝑘) · 𝑏) ∈ ℚ)
212 qaddcl 11997 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑃𝑘) · 𝑎) ∈ ℚ ∧ ((𝑝𝑘) · 𝑏) ∈ ℚ) → (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏)) ∈ ℚ)
213203, 211, 212syl2anc 696 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏)) ∈ ℚ)
21411, 13abvcl 19026 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹𝐴 ∧ (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏)) ∈ ℚ) → (𝐹‘(((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏))) ∈ ℝ)
215195, 213, 214syl2anc 696 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘(((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏))) ∈ ℝ)
21611, 13abvcl 19026 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐹𝐴 ∧ ((𝑃𝑘) · 𝑎) ∈ ℚ) → (𝐹‘((𝑃𝑘) · 𝑎)) ∈ ℝ)
217195, 203, 216syl2anc 696 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘((𝑃𝑘) · 𝑎)) ∈ ℝ)
21811, 13abvcl 19026 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐹𝐴 ∧ ((𝑝𝑘) · 𝑏) ∈ ℚ) → (𝐹‘((𝑝𝑘) · 𝑏)) ∈ ℝ)
219195, 211, 218syl2anc 696 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘((𝑝𝑘) · 𝑏)) ∈ ℝ)
220217, 219readdcld 10261 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹‘((𝑃𝑘) · 𝑎)) + (𝐹‘((𝑝𝑘) · 𝑏))) ∈ ℝ)
221 rpexpcl 13073 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑆 ∈ ℝ+𝑘 ∈ ℤ) → (𝑆𝑘) ∈ ℝ+)
222144, 161, 221syl2an 495 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (𝑆𝑘) ∈ ℝ+)
223222rpred 12065 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (𝑆𝑘) ∈ ℝ)
224223adantrr 755 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝑆𝑘) ∈ ℝ)
225 remulcl 10213 . . . . . . . . . . . . . . . . . . . . . . . 24 ((2 ∈ ℝ ∧ (𝑆𝑘) ∈ ℝ) → (2 · (𝑆𝑘)) ∈ ℝ)
226132, 224, 225sylancr 698 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (2 · (𝑆𝑘)) ∈ ℝ)
227 qex 11993 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ℚ ∈ V
228 cnfldadd 19953 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 + = (+g‘ℂfld)
22912, 228ressplusg 16195 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (ℚ ∈ V → + = (+g𝑄))
230227, 229ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . 25 + = (+g𝑄)
23111, 13, 230abvtri 19032 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹𝐴 ∧ ((𝑃𝑘) · 𝑎) ∈ ℚ ∧ ((𝑝𝑘) · 𝑏) ∈ ℚ) → (𝐹‘(((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏))) ≤ ((𝐹‘((𝑃𝑘) · 𝑎)) + (𝐹‘((𝑝𝑘) · 𝑏))))
232195, 203, 211, 231syl3anc 1477 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘(((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏))) ≤ ((𝐹‘((𝑃𝑘) · 𝑎)) + (𝐹‘((𝑝𝑘) · 𝑏))))
233 cnfldmul 19954 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 · = (.r‘ℂfld)
23412, 233ressmulr 16208 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (ℚ ∈ V → · = (.r𝑄))
235227, 234ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 · = (.r𝑄)
23611, 13, 235abvmul 19031 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐹𝐴 ∧ (𝑃𝑘) ∈ ℚ ∧ 𝑎 ∈ ℚ) → (𝐹‘((𝑃𝑘) · 𝑎)) = ((𝐹‘(𝑃𝑘)) · (𝐹𝑎)))
237195, 198, 201, 236syl3anc 1477 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘((𝑃𝑘) · 𝑎)) = ((𝐹‘(𝑃𝑘)) · (𝐹𝑎)))
23810ad3antrrr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 𝑃 ∈ ℚ)
239170ad2antrl 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 𝑘 ∈ ℕ0)
24012, 11qabvexp 25514 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐹𝐴𝑃 ∈ ℚ ∧ 𝑘 ∈ ℕ0) → (𝐹‘(𝑃𝑘)) = ((𝐹𝑃)↑𝑘))
241195, 238, 239, 240syl3anc 1477 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘(𝑃𝑘)) = ((𝐹𝑃)↑𝑘))
242241oveq1d 6828 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹‘(𝑃𝑘)) · (𝐹𝑎)) = (((𝐹𝑃)↑𝑘) · (𝐹𝑎)))
243237, 242eqtrd 2794 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘((𝑃𝑘) · 𝑎)) = (((𝐹𝑃)↑𝑘) · (𝐹𝑎)))
244195, 238, 14syl2anc 696 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹𝑃) ∈ ℝ)
245244, 239reexpcld 13219 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹𝑃)↑𝑘) ∈ ℝ)
24611, 13abvcl 19026 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐹𝐴𝑎 ∈ ℚ) → (𝐹𝑎) ∈ ℝ)
247195, 201, 246syl2anc 696 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹𝑎) ∈ ℝ)
248245, 247remulcld 10262 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝐹𝑃)↑𝑘) · (𝐹𝑎)) ∈ ℝ)
249 elz 11571 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑎 ∈ ℤ ↔ (𝑎 ∈ ℝ ∧ (𝑎 = 0 ∨ 𝑎 ∈ ℕ ∨ -𝑎 ∈ ℕ)))
250249simprbi 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑎 ∈ ℤ → (𝑎 = 0 ∨ 𝑎 ∈ ℕ ∨ -𝑎 ∈ ℕ))
251250adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑎 ∈ ℤ) → (𝑎 = 0 ∨ 𝑎 ∈ ℕ ∨ -𝑎 ∈ ℕ))
25211, 17abv0 19033 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝐹𝐴 → (𝐹‘0) = 0)
2532, 252syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝜑 → (𝐹‘0) = 0)
254 0le1 10743 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 0 ≤ 1
255253, 254syl6eqbr 4843 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝜑 → (𝐹‘0) ≤ 1)
256255adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑎 ∈ ℤ) → (𝐹‘0) ≤ 1)
257 fveq2 6352 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑎 = 0 → (𝐹𝑎) = (𝐹‘0))
258257breq1d 4814 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑎 = 0 → ((𝐹𝑎) ≤ 1 ↔ (𝐹‘0) ≤ 1))
259256, 258syl5ibrcom 237 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑎 ∈ ℤ) → (𝑎 = 0 → (𝐹𝑎) ≤ 1))
260 ostth3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝜑 → ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛))
261 nnq 11994 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑛 ∈ ℕ → 𝑛 ∈ ℚ)
26211, 13abvcl 19026 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝐹𝐴𝑛 ∈ ℚ) → (𝐹𝑛) ∈ ℝ)
2632, 261, 262syl2an 495 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ℝ)
264 1re 10231 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 1 ∈ ℝ
265 lenlt 10308 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝐹𝑛) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝐹𝑛) ≤ 1 ↔ ¬ 1 < (𝐹𝑛)))
266263, 264, 265sylancl 697 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑𝑛 ∈ ℕ) → ((𝐹𝑛) ≤ 1 ↔ ¬ 1 < (𝐹𝑛)))
267266ralbidva 3123 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝜑 → (∀𝑛 ∈ ℕ (𝐹𝑛) ≤ 1 ↔ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛)))
268260, 267mpbird 247 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝜑 → ∀𝑛 ∈ ℕ (𝐹𝑛) ≤ 1)
269 fveq2 6352 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑛 = 𝑎 → (𝐹𝑛) = (𝐹𝑎))
270269breq1d 4814 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑛 = 𝑎 → ((𝐹𝑛) ≤ 1 ↔ (𝐹𝑎) ≤ 1))
271270rspccv 3446 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (∀𝑛 ∈ ℕ (𝐹𝑛) ≤ 1 → (𝑎 ∈ ℕ → (𝐹𝑎) ≤ 1))
272268, 271syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜑 → (𝑎 ∈ ℕ → (𝐹𝑎) ≤ 1))
273272adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑎 ∈ ℤ) → (𝑎 ∈ ℕ → (𝐹𝑎) ≤ 1))
2742adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑 ∧ (𝑎 ∈ ℤ ∧ -𝑎 ∈ ℕ)) → 𝐹𝐴)
275200ad2antrl 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑 ∧ (𝑎 ∈ ℤ ∧ -𝑎 ∈ ℕ)) → 𝑎 ∈ ℚ)
276 eqid 2760 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (invg𝑄) = (invg𝑄)
27711, 13, 276abvneg 19036 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝐹𝐴𝑎 ∈ ℚ) → (𝐹‘((invg𝑄)‘𝑎)) = (𝐹𝑎))
278274, 275, 277syl2anc 696 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑 ∧ (𝑎 ∈ ℤ ∧ -𝑎 ∈ ℕ)) → (𝐹‘((invg𝑄)‘𝑎)) = (𝐹𝑎))
27912qrngneg 25511 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑎 ∈ ℚ → ((invg𝑄)‘𝑎) = -𝑎)
280275, 279syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑 ∧ (𝑎 ∈ ℤ ∧ -𝑎 ∈ ℕ)) → ((invg𝑄)‘𝑎) = -𝑎)
281 simprr 813 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑 ∧ (𝑎 ∈ ℤ ∧ -𝑎 ∈ ℕ)) → -𝑎 ∈ ℕ)
282280, 281eqeltrd 2839 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑 ∧ (𝑎 ∈ ℤ ∧ -𝑎 ∈ ℕ)) → ((invg𝑄)‘𝑎) ∈ ℕ)
283268adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑 ∧ (𝑎 ∈ ℤ ∧ -𝑎 ∈ ℕ)) → ∀𝑛 ∈ ℕ (𝐹𝑛) ≤ 1)
284 fveq2 6352 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑛 = ((invg𝑄)‘𝑎) → (𝐹𝑛) = (𝐹‘((invg𝑄)‘𝑎)))
285284breq1d 4814 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑛 = ((invg𝑄)‘𝑎) → ((𝐹𝑛) ≤ 1 ↔ (𝐹‘((invg𝑄)‘𝑎)) ≤ 1))
286285rspcv 3445 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((invg𝑄)‘𝑎) ∈ ℕ → (∀𝑛 ∈ ℕ (𝐹𝑛) ≤ 1 → (𝐹‘((invg𝑄)‘𝑎)) ≤ 1))
287282, 283, 286sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑 ∧ (𝑎 ∈ ℤ ∧ -𝑎 ∈ ℕ)) → (𝐹‘((invg𝑄)‘𝑎)) ≤ 1)
288278, 287eqbrtrrd 4828 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑 ∧ (𝑎 ∈ ℤ ∧ -𝑎 ∈ ℕ)) → (𝐹𝑎) ≤ 1)
289288expr 644 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑎 ∈ ℤ) → (-𝑎 ∈ ℕ → (𝐹𝑎) ≤ 1))
290259, 273, 2893jaod 1541 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑎 ∈ ℤ) → ((𝑎 = 0 ∨ 𝑎 ∈ ℕ ∨ -𝑎 ∈ ℕ) → (𝐹𝑎) ≤ 1))
291251, 290mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑎 ∈ ℤ) → (𝐹𝑎) ≤ 1)
292291ralrimiva 3104 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → ∀𝑎 ∈ ℤ (𝐹𝑎) ≤ 1)
293292ad3antrrr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ∀𝑎 ∈ ℤ (𝐹𝑎) ≤ 1)
294 rsp 3067 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (∀𝑎 ∈ ℤ (𝐹𝑎) ≤ 1 → (𝑎 ∈ ℤ → (𝐹𝑎) ≤ 1))
295293, 199, 294sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹𝑎) ≤ 1)
296264a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 1 ∈ ℝ)
297161ad2antrl 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 𝑘 ∈ ℤ)
29819ad3antrrr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 0 < (𝐹𝑃))
299 expgt0 13087 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝐹𝑃) ∈ ℝ ∧ 𝑘 ∈ ℤ ∧ 0 < (𝐹𝑃)) → 0 < ((𝐹𝑃)↑𝑘))
300244, 297, 298, 299syl3anc 1477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 0 < ((𝐹𝑃)↑𝑘))
301 lemul2 11068 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐹𝑎) ∈ ℝ ∧ 1 ∈ ℝ ∧ (((𝐹𝑃)↑𝑘) ∈ ℝ ∧ 0 < ((𝐹𝑃)↑𝑘))) → ((𝐹𝑎) ≤ 1 ↔ (((𝐹𝑃)↑𝑘) · (𝐹𝑎)) ≤ (((𝐹𝑃)↑𝑘) · 1)))
302247, 296, 245, 300, 301syl112anc 1481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹𝑎) ≤ 1 ↔ (((𝐹𝑃)↑𝑘) · (𝐹𝑎)) ≤ (((𝐹𝑃)↑𝑘) · 1)))
303295, 302mpbid 222 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝐹𝑃)↑𝑘) · (𝐹𝑎)) ≤ (((𝐹𝑃)↑𝑘) · 1))
304245recnd 10260 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹𝑃)↑𝑘) ∈ ℂ)
305304mulid1d 10249 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝐹𝑃)↑𝑘) · 1) = ((𝐹𝑃)↑𝑘))
306303, 305breqtrd 4830 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝐹𝑃)↑𝑘) · (𝐹𝑎)) ≤ ((𝐹𝑃)↑𝑘))
307144rpred 12065 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → 𝑆 ∈ ℝ)
308307adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 𝑆 ∈ ℝ)
309142adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹𝑃) ∈ ℝ+)
310309rpge0d 12069 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 0 ≤ (𝐹𝑃))
311174adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 𝑝 ∈ ℕ)
312311, 101syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 𝑝 ∈ ℚ)
313195, 312, 136syl2anc 696 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹𝑝) ∈ ℝ)
314 max1 12209 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐹𝑃) ∈ ℝ ∧ (𝐹𝑝) ∈ ℝ) → (𝐹𝑃) ≤ if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃)))
315244, 313, 314syl2anc 696 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹𝑃) ≤ if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃)))
316315, 134syl6breqr 4846 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹𝑃) ≤ 𝑆)
317 leexp1a 13113 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐹𝑃) ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (0 ≤ (𝐹𝑃) ∧ (𝐹𝑃) ≤ 𝑆)) → ((𝐹𝑃)↑𝑘) ≤ (𝑆𝑘))
318244, 308, 239, 310, 316, 317syl32anc 1485 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹𝑃)↑𝑘) ≤ (𝑆𝑘))
319248, 245, 224, 306, 318letrd 10386 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝐹𝑃)↑𝑘) · (𝐹𝑎)) ≤ (𝑆𝑘))
320243, 319eqbrtrd 4826 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘((𝑃𝑘) · 𝑎)) ≤ (𝑆𝑘))
32111, 13, 235abvmul 19031 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐹𝐴 ∧ (𝑝𝑘) ∈ ℚ ∧ 𝑏 ∈ ℚ) → (𝐹‘((𝑝𝑘) · 𝑏)) = ((𝐹‘(𝑝𝑘)) · (𝐹𝑏)))
322195, 206, 209, 321syl3anc 1477 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘((𝑝𝑘) · 𝑏)) = ((𝐹‘(𝑝𝑘)) · (𝐹𝑏)))
32312, 11qabvexp 25514 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐹𝐴𝑝 ∈ ℚ ∧ 𝑘 ∈ ℕ0) → (𝐹‘(𝑝𝑘)) = ((𝐹𝑝)↑𝑘))
324195, 312, 239, 323syl3anc 1477 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘(𝑝𝑘)) = ((𝐹𝑝)↑𝑘))
325324oveq1d 6828 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹‘(𝑝𝑘)) · (𝐹𝑏)) = (((𝐹𝑝)↑𝑘) · (𝐹𝑏)))
326322, 325eqtrd 2794 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘((𝑝𝑘) · 𝑏)) = (((𝐹𝑝)↑𝑘) · (𝐹𝑏)))
327313, 239reexpcld 13219 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹𝑝)↑𝑘) ∈ ℝ)
32811, 13abvcl 19026 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐹𝐴𝑏 ∈ ℚ) → (𝐹𝑏) ∈ ℝ)
329195, 209, 328syl2anc 696 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹𝑏) ∈ ℝ)
330327, 329remulcld 10262 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝐹𝑝)↑𝑘) · (𝐹𝑏)) ∈ ℝ)
331 fveq2 6352 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑎 = 𝑏 → (𝐹𝑎) = (𝐹𝑏))
332331breq1d 4814 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑎 = 𝑏 → ((𝐹𝑎) ≤ 1 ↔ (𝐹𝑏) ≤ 1))
333332rspcv 3445 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑏 ∈ ℤ → (∀𝑎 ∈ ℤ (𝐹𝑎) ≤ 1 → (𝐹𝑏) ≤ 1))
334207, 293, 333sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹𝑏) ≤ 1)
335311nnne0d 11257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 𝑝 ≠ 0)
336195, 312, 335, 138syl3anc 1477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 0 < (𝐹𝑝))
337 expgt0 13087 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝐹𝑝) ∈ ℝ ∧ 𝑘 ∈ ℤ ∧ 0 < (𝐹𝑝)) → 0 < ((𝐹𝑝)↑𝑘))
338313, 297, 336, 337syl3anc 1477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 0 < ((𝐹𝑝)↑𝑘))
339 lemul2 11068 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐹𝑏) ∈ ℝ ∧ 1 ∈ ℝ ∧ (((𝐹𝑝)↑𝑘) ∈ ℝ ∧ 0 < ((𝐹𝑝)↑𝑘))) → ((𝐹𝑏) ≤ 1 ↔ (((𝐹𝑝)↑𝑘) · (𝐹𝑏)) ≤ (((𝐹𝑝)↑𝑘) · 1)))
340329, 296, 327, 338, 339syl112anc 1481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹𝑏) ≤ 1 ↔ (((𝐹𝑝)↑𝑘) · (𝐹𝑏)) ≤ (((𝐹𝑝)↑𝑘) · 1)))
341334, 340mpbid 222 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝐹𝑝)↑𝑘) · (𝐹𝑏)) ≤ (((𝐹𝑝)↑𝑘) · 1))
342327recnd 10260 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹𝑝)↑𝑘) ∈ ℂ)
343342mulid1d 10249 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝐹𝑝)↑𝑘) · 1) = ((𝐹𝑝)↑𝑘))
344341, 343breqtrd 4830 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝐹𝑝)↑𝑘) · (𝐹𝑏)) ≤ ((𝐹𝑝)↑𝑘))
345141adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹𝑝) ∈ ℝ+)
346345rpge0d 12069 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 0 ≤ (𝐹𝑝))
347 max2 12211 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐹𝑃) ∈ ℝ ∧ (𝐹𝑝) ∈ ℝ) → (𝐹𝑝) ≤ if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃)))
348244, 313, 347syl2anc 696 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹𝑝) ≤ if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃)))
349348, 134syl6breqr 4846 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹𝑝) ≤ 𝑆)
350 leexp1a 13113 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐹𝑝) ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (0 ≤ (𝐹𝑝) ∧ (𝐹𝑝) ≤ 𝑆)) → ((𝐹𝑝)↑𝑘) ≤ (𝑆𝑘))
351313, 308, 239, 346, 349, 350syl32anc 1485 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹𝑝)↑𝑘) ≤ (𝑆𝑘))
352330, 327, 224, 344, 351letrd 10386 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝐹𝑝)↑𝑘) · (𝐹𝑏)) ≤ (𝑆𝑘))
353326, 352eqbrtrd 4826 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘((𝑝𝑘) · 𝑏)) ≤ (𝑆𝑘))
354217, 219, 224, 224, 320, 353le2addd 10838 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹‘((𝑃𝑘) · 𝑎)) + (𝐹‘((𝑝𝑘) · 𝑏))) ≤ ((𝑆𝑘) + (𝑆𝑘)))
355222rpcnd 12067 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (𝑆𝑘) ∈ ℂ)
3563552timesd 11467 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (2 · (𝑆𝑘)) = ((𝑆𝑘) + (𝑆𝑘)))
357356adantrr 755 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (2 · (𝑆𝑘)) = ((𝑆𝑘) + (𝑆𝑘)))
358354, 357breqtrrd 4832 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹‘((𝑃𝑘) · 𝑎)) + (𝐹‘((𝑝𝑘) · 𝑏))) ≤ (2 · (𝑆𝑘)))
359215, 220, 226, 232, 358letrd 10386 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘(((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏))) ≤ (2 · (𝑆𝑘)))
360 fveq2 6352 . . . . . . . . . . . . . . . . . . . . . . 23 (1 = (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏)) → (𝐹‘1) = (𝐹‘(((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏))))
361360breq1d 4814 . . . . . . . . . . . . . . . . . . . . . 22 (1 = (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏)) → ((𝐹‘1) ≤ (2 · (𝑆𝑘)) ↔ (𝐹‘(((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏))) ≤ (2 · (𝑆𝑘))))
362359, 361syl5ibrcom 237 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (1 = (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏)) → (𝐹‘1) ≤ (2 · (𝑆𝑘))))
363194, 362sylbid 230 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝑃𝑘) gcd (𝑝𝑘)) = (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏)) → (𝐹‘1) ≤ (2 · (𝑆𝑘))))
364363anassrs 683 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝑃𝑘) gcd (𝑝𝑘)) = (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏)) → (𝐹‘1) ≤ (2 · (𝑆𝑘))))
365364rexlimdvva 3176 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ((𝑃𝑘) gcd (𝑝𝑘)) = (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏)) → (𝐹‘1) ≤ (2 · (𝑆𝑘))))
366179, 365mpd 15 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (𝐹‘1) ≤ (2 · (𝑆𝑘)))
367168, 366eqbrtrrd 4828 . . . . . . . . . . . . . . . 16 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → 1 ≤ (2 · (𝑆𝑘)))
368222rpregt0d 12071 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → ((𝑆𝑘) ∈ ℝ ∧ 0 < (𝑆𝑘)))
369 ledivmul2 11094 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℝ ∧ 2 ∈ ℝ ∧ ((𝑆𝑘) ∈ ℝ ∧ 0 < (𝑆𝑘))) → ((1 / (𝑆𝑘)) ≤ 2 ↔ 1 ≤ (2 · (𝑆𝑘))))
370264, 132, 369mp3an12 1563 . . . . . . . . . . . . . . . . 17 (((𝑆𝑘) ∈ ℝ ∧ 0 < (𝑆𝑘)) → ((1 / (𝑆𝑘)) ≤ 2 ↔ 1 ≤ (2 · (𝑆𝑘))))
371368, 370syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → ((1 / (𝑆𝑘)) ≤ 2 ↔ 1 ≤ (2 · (𝑆𝑘))))
372367, 371mpbird 247 . . . . . . . . . . . . . . 15 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (1 / (𝑆𝑘)) ≤ 2)
373163, 372eqbrtrd 4826 . . . . . . . . . . . . . 14 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → ((1 / 𝑆)↑𝑘) ≤ 2)
374 reexpcl 13071 . . . . . . . . . . . . . . . 16 (((1 / 𝑆) ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((1 / 𝑆)↑𝑘) ∈ ℝ)
375145, 170, 374syl2an 495 . . . . . . . . . . . . . . 15 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → ((1 / 𝑆)↑𝑘) ∈ ℝ)
376 lenlt 10308 . . . . . . . . . . . . . . 15 ((((1 / 𝑆)↑𝑘) ∈ ℝ ∧ 2 ∈ ℝ) → (((1 / 𝑆)↑𝑘) ≤ 2 ↔ ¬ 2 < ((1 / 𝑆)↑𝑘)))
377375, 132, 376sylancl 697 . . . . . . . . . . . . . 14 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (((1 / 𝑆)↑𝑘) ≤ 2 ↔ ¬ 2 < ((1 / 𝑆)↑𝑘)))
378373, 377mpbid 222 . . . . . . . . . . . . 13 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → ¬ 2 < ((1 / 𝑆)↑𝑘))
379378pm2.21d 118 . . . . . . . . . . . 12 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (2 < ((1 / 𝑆)↑𝑘) → ¬ (𝐹𝑝) < 1))
380379rexlimdva 3169 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → (∃𝑘 ∈ ℕ 2 < ((1 / 𝑆)↑𝑘) → ¬ (𝐹𝑝) < 1))
381156, 380mpd 15 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → ¬ (𝐹𝑝) < 1)
382381expr 644 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → ((𝐹𝑝) < 1 → ¬ (𝐹𝑝) < 1))
383382pm2.01d 181 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → ¬ (𝐹𝑝) < 1)
384260ad2antrr 764 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛))
385 fveq2 6352 . . . . . . . . . . . 12 (𝑛 = 𝑝 → (𝐹𝑛) = (𝐹𝑝))
386385breq2d 4816 . . . . . . . . . . 11 (𝑛 = 𝑝 → (1 < (𝐹𝑛) ↔ 1 < (𝐹𝑝)))
387386notbid 307 . . . . . . . . . 10 (𝑛 = 𝑝 → (¬ 1 < (𝐹𝑛) ↔ ¬ 1 < (𝐹𝑝)))
388387rspcv 3445 . . . . . . . . 9 (𝑝 ∈ ℕ → (∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛) → ¬ 1 < (𝐹𝑝)))
389100, 384, 388sylc 65 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → ¬ 1 < (𝐹𝑝))
390 lttri3 10313 . . . . . . . . 9 (((𝐹𝑝) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝐹𝑝) = 1 ↔ (¬ (𝐹𝑝) < 1 ∧ ¬ 1 < (𝐹𝑝))))
391137, 264, 390sylancl 697 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → ((𝐹𝑝) = 1 ↔ (¬ (𝐹𝑝) < 1 ∧ ¬ 1 < (𝐹𝑝))))
392383, 389, 391mpbir2and 995 . . . . . . 7 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → (𝐹𝑝) = 1)
393109, 131, 3923eqtr4d 2804 . . . . . 6 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → (((𝐽𝑃)‘𝑝)↑𝑐𝑅) = (𝐹𝑝))
394107, 393eqtr2d 2795 . . . . 5 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → (𝐹𝑝) = ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑝))
395394ex 449 . . . 4 ((𝜑𝑝 ∈ ℙ) → (𝑃𝑝 → (𝐹𝑝) = ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑝)))
39698, 395pm2.61dne 3018 . . 3 ((𝜑𝑝 ∈ ℙ) → (𝐹𝑝) = ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑝))
39712, 11, 2, 47, 396ostthlem2 25516 . 2 (𝜑𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅)))
398 oveq2 6821 . . . . 5 (𝑎 = 𝑅 → (((𝐽𝑃)‘𝑦)↑𝑐𝑎) = (((𝐽𝑃)‘𝑦)↑𝑐𝑅))
399398mpteq2dv 4897 . . . 4 (𝑎 = 𝑅 → (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑎)) = (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅)))
400399eqeq2d 2770 . . 3 (𝑎 = 𝑅 → (𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑎)) ↔ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))))
401400rspcev 3449 . 2 ((𝑅 ∈ ℝ+𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))) → ∃𝑎 ∈ ℝ+ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑎)))
40244, 397, 401syl2anc 696 1 (𝜑 → ∃𝑎 ∈ ℝ+ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑎)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3o 1071   = wceq 1632  wcel 2139  wne 2932  wral 3050  wrex 3051  Vcvv 3340  ifcif 4230   class class class wbr 4804  cmpt 4881  cfv 6049  (class class class)co 6813  cc 10126  cr 10127  0cc0 10128  1c1 10129   + caddc 10131   · cmul 10133   < clt 10266  cle 10267  -cneg 10459   / cdiv 10876  cn 11212  2c2 11262  0cn0 11484  cz 11569  cuz 11879  cq 11981  +crp 12025  cexp 13054  expce 14991  cdvds 15182   gcd cgcd 15418  cprime 15587   pCnt cpc 15743  s cress 16060  +gcplusg 16143  .rcmulr 16144  invgcminusg 17624  AbsValcabv 19018  fldccnfld 19948  logclog 24500  𝑐ccxp 24501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206  ax-addf 10207  ax-mulf 10208
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-om 7231  df-1st 7333  df-2nd 7334  df-supp 7464  df-tpos 7521  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-er 7911  df-map 8025  df-pm 8026  df-ixp 8075  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fsupp 8441  df-fi 8482  df-sup 8513  df-inf 8514  df-oi 8580  df-card 8955  df-cda 9182  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-dec 11686  df-uz 11880  df-q 11982  df-rp 12026  df-xneg 12139  df-xadd 12140  df-xmul 12141  df-ioo 12372  df-ioc 12373  df-ico 12374  df-icc 12375  df-fz 12520  df-fzo 12660  df-fl 12787  df-mod 12863  df-seq 12996  df-exp 13055  df-fac 13255  df-bc 13284  df-hash 13312  df-shft 14006  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-limsup 14401  df-clim 14418  df-rlim 14419  df-sum 14616  df-ef 14997  df-sin 14999  df-cos 15000  df-pi 15002  df-dvds 15183  df-gcd 15419  df-prm 15588  df-pc 15744  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-starv 16158  df-sca 16159  df-vsca 16160  df-ip 16161  df-tset 16162  df-ple 16163  df-ds 16166  df-unif 16167  df-hom 16168  df-cco 16169  df-rest 16285  df-topn 16286  df-0g 16304  df-gsum 16305  df-topgen 16306  df-pt 16307  df-prds 16310  df-xrs 16364  df-qtop 16369  df-imas 16370  df-xps 16372  df-mre 16448  df-mrc 16449  df-acs 16451  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-grp 17626  df-minusg 17627  df-mulg 17742  df-subg 17792  df-cntz 17950  df-cmn 18395  df-mgp 18690  df-ur 18702  df-ring 18749  df-cring 18750  df-oppr 18823  df-dvdsr 18841  df-unit 18842  df-invr 18872  df-dvr 18883  df-drng 18951  df-subrg 18980  df-abv 19019  df-psmet 19940  df-xmet 19941  df-met 19942  df-bl 19943  df-mopn 19944  df-fbas 19945  df-fg 19946  df-cnfld 19949  df-top 20901  df-topon 20918  df-topsp 20939  df-bases 20952  df-cld 21025  df-ntr 21026  df-cls 21027  df-nei 21104  df-lp 21142  df-perf 21143  df-cn 21233  df-cnp 21234  df-haus 21321  df-tx 21567  df-hmeo 21760  df-fil 21851  df-fm 21943  df-flim 21944  df-flf 21945  df-xms 22326  df-ms 22327  df-tms 22328  df-cncf 22882  df-limc 23829  df-dv 23830  df-log 24502  df-cxp 24503
This theorem is referenced by:  ostth  25527
  Copyright terms: Public domain W3C validator