MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ostth2lem3 Structured version   Visualization version   GIF version

Theorem ostth2lem3 25523
Description: Lemma for ostth2 25525. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
qrng.q 𝑄 = (ℂflds ℚ)
qabsabv.a 𝐴 = (AbsVal‘𝑄)
padic.j 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))
ostth.k 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1))
ostth.1 (𝜑𝐹𝐴)
ostth2.2 (𝜑𝑁 ∈ (ℤ‘2))
ostth2.3 (𝜑 → 1 < (𝐹𝑁))
ostth2.4 𝑅 = ((log‘(𝐹𝑁)) / (log‘𝑁))
ostth2.5 (𝜑𝑀 ∈ (ℤ‘2))
ostth2.6 𝑆 = ((log‘(𝐹𝑀)) / (log‘𝑀))
ostth2.7 𝑇 = if((𝐹𝑀) ≤ 1, 1, (𝐹𝑀))
ostth2.8 𝑈 = ((log‘𝑁) / (log‘𝑀))
Assertion
Ref Expression
ostth2lem3 ((𝜑𝑋 ∈ ℕ) → (((𝐹𝑁) / (𝑇𝑐𝑈))↑𝑋) ≤ (𝑋 · ((𝑀 · 𝑇) · (𝑈 + 1))))
Distinct variable groups:   𝑥,𝑀   𝑥,𝑞,𝜑   𝑥,𝑇   𝑥,𝑈   𝑥,𝑋   𝐴,𝑞,𝑥   𝑥,𝑁   𝑥,𝑄   𝐹,𝑞   𝑅,𝑞   𝑥,𝐹
Allowed substitution hints:   𝑄(𝑞)   𝑅(𝑥)   𝑆(𝑥,𝑞)   𝑇(𝑞)   𝑈(𝑞)   𝐽(𝑥,𝑞)   𝐾(𝑥,𝑞)   𝑀(𝑞)   𝑁(𝑞)   𝑋(𝑞)

Proof of Theorem ostth2lem3
StepHypRef Expression
1 ostth.1 . . . . . 6 (𝜑𝐹𝐴)
2 ostth2.2 . . . . . . . . 9 (𝜑𝑁 ∈ (ℤ‘2))
3 eluz2b2 11954 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 1 < 𝑁))
42, 3sylib 208 . . . . . . . 8 (𝜑 → (𝑁 ∈ ℕ ∧ 1 < 𝑁))
54simpld 477 . . . . . . 7 (𝜑𝑁 ∈ ℕ)
6 nnq 11994 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℚ)
75, 6syl 17 . . . . . 6 (𝜑𝑁 ∈ ℚ)
8 qabsabv.a . . . . . . 7 𝐴 = (AbsVal‘𝑄)
9 qrng.q . . . . . . . 8 𝑄 = (ℂflds ℚ)
109qrngbas 25507 . . . . . . 7 ℚ = (Base‘𝑄)
118, 10abvcl 19026 . . . . . 6 ((𝐹𝐴𝑁 ∈ ℚ) → (𝐹𝑁) ∈ ℝ)
121, 7, 11syl2anc 696 . . . . 5 (𝜑 → (𝐹𝑁) ∈ ℝ)
1312adantr 472 . . . 4 ((𝜑𝑋 ∈ ℕ) → (𝐹𝑁) ∈ ℝ)
1413recnd 10260 . . 3 ((𝜑𝑋 ∈ ℕ) → (𝐹𝑁) ∈ ℂ)
15 ostth2.7 . . . . . . 7 𝑇 = if((𝐹𝑀) ≤ 1, 1, (𝐹𝑀))
16 1re 10231 . . . . . . . 8 1 ∈ ℝ
17 ostth2.5 . . . . . . . . . . . 12 (𝜑𝑀 ∈ (ℤ‘2))
18 eluz2b2 11954 . . . . . . . . . . . 12 (𝑀 ∈ (ℤ‘2) ↔ (𝑀 ∈ ℕ ∧ 1 < 𝑀))
1917, 18sylib 208 . . . . . . . . . . 11 (𝜑 → (𝑀 ∈ ℕ ∧ 1 < 𝑀))
2019simpld 477 . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ)
21 nnq 11994 . . . . . . . . . 10 (𝑀 ∈ ℕ → 𝑀 ∈ ℚ)
2220, 21syl 17 . . . . . . . . 9 (𝜑𝑀 ∈ ℚ)
238, 10abvcl 19026 . . . . . . . . 9 ((𝐹𝐴𝑀 ∈ ℚ) → (𝐹𝑀) ∈ ℝ)
241, 22, 23syl2anc 696 . . . . . . . 8 (𝜑 → (𝐹𝑀) ∈ ℝ)
25 ifcl 4274 . . . . . . . 8 ((1 ∈ ℝ ∧ (𝐹𝑀) ∈ ℝ) → if((𝐹𝑀) ≤ 1, 1, (𝐹𝑀)) ∈ ℝ)
2616, 24, 25sylancr 698 . . . . . . 7 (𝜑 → if((𝐹𝑀) ≤ 1, 1, (𝐹𝑀)) ∈ ℝ)
2715, 26syl5eqel 2843 . . . . . 6 (𝜑𝑇 ∈ ℝ)
2827adantr 472 . . . . 5 ((𝜑𝑋 ∈ ℕ) → 𝑇 ∈ ℝ)
29 0red 10233 . . . . . . . . 9 (𝜑 → 0 ∈ ℝ)
30 1red 10247 . . . . . . . . 9 (𝜑 → 1 ∈ ℝ)
31 0lt1 10742 . . . . . . . . . 10 0 < 1
3231a1i 11 . . . . . . . . 9 (𝜑 → 0 < 1)
33 max2 12211 . . . . . . . . . . 11 (((𝐹𝑀) ∈ ℝ ∧ 1 ∈ ℝ) → 1 ≤ if((𝐹𝑀) ≤ 1, 1, (𝐹𝑀)))
3424, 30, 33syl2anc 696 . . . . . . . . . 10 (𝜑 → 1 ≤ if((𝐹𝑀) ≤ 1, 1, (𝐹𝑀)))
3534, 15syl6breqr 4846 . . . . . . . . 9 (𝜑 → 1 ≤ 𝑇)
3629, 30, 27, 32, 35ltletrd 10389 . . . . . . . 8 (𝜑 → 0 < 𝑇)
3736adantr 472 . . . . . . 7 ((𝜑𝑋 ∈ ℕ) → 0 < 𝑇)
3828, 37elrpd 12062 . . . . . 6 ((𝜑𝑋 ∈ ℕ) → 𝑇 ∈ ℝ+)
3938rpge0d 12069 . . . . 5 ((𝜑𝑋 ∈ ℕ) → 0 ≤ 𝑇)
40 ostth2.8 . . . . . . . 8 𝑈 = ((log‘𝑁) / (log‘𝑀))
415nnred 11227 . . . . . . . . . 10 (𝜑𝑁 ∈ ℝ)
424simprd 482 . . . . . . . . . 10 (𝜑 → 1 < 𝑁)
4341, 42rplogcld 24574 . . . . . . . . 9 (𝜑 → (log‘𝑁) ∈ ℝ+)
4420nnred 11227 . . . . . . . . . 10 (𝜑𝑀 ∈ ℝ)
4519simprd 482 . . . . . . . . . 10 (𝜑 → 1 < 𝑀)
4644, 45rplogcld 24574 . . . . . . . . 9 (𝜑 → (log‘𝑀) ∈ ℝ+)
4743, 46rpdivcld 12082 . . . . . . . 8 (𝜑 → ((log‘𝑁) / (log‘𝑀)) ∈ ℝ+)
4840, 47syl5eqel 2843 . . . . . . 7 (𝜑𝑈 ∈ ℝ+)
4948rpred 12065 . . . . . 6 (𝜑𝑈 ∈ ℝ)
5049adantr 472 . . . . 5 ((𝜑𝑋 ∈ ℕ) → 𝑈 ∈ ℝ)
5128, 39, 50recxpcld 24668 . . . 4 ((𝜑𝑋 ∈ ℕ) → (𝑇𝑐𝑈) ∈ ℝ)
5251recnd 10260 . . 3 ((𝜑𝑋 ∈ ℕ) → (𝑇𝑐𝑈) ∈ ℂ)
5338, 50rpcxpcld 24675 . . . 4 ((𝜑𝑋 ∈ ℕ) → (𝑇𝑐𝑈) ∈ ℝ+)
5453rpne0d 12070 . . 3 ((𝜑𝑋 ∈ ℕ) → (𝑇𝑐𝑈) ≠ 0)
55 nnnn0 11491 . . . 4 (𝑋 ∈ ℕ → 𝑋 ∈ ℕ0)
5655adantl 473 . . 3 ((𝜑𝑋 ∈ ℕ) → 𝑋 ∈ ℕ0)
5714, 52, 54, 56expdivd 13216 . 2 ((𝜑𝑋 ∈ ℕ) → (((𝐹𝑁) / (𝑇𝑐𝑈))↑𝑋) = (((𝐹𝑁)↑𝑋) / ((𝑇𝑐𝑈)↑𝑋)))
58 reexpcl 13071 . . . . . 6 (((𝐹𝑁) ∈ ℝ ∧ 𝑋 ∈ ℕ0) → ((𝐹𝑁)↑𝑋) ∈ ℝ)
5912, 55, 58syl2an 495 . . . . 5 ((𝜑𝑋 ∈ ℕ) → ((𝐹𝑁)↑𝑋) ∈ ℝ)
6020adantr 472 . . . . . . . 8 ((𝜑𝑋 ∈ ℕ) → 𝑀 ∈ ℕ)
6160nnred 11227 . . . . . . 7 ((𝜑𝑋 ∈ ℕ) → 𝑀 ∈ ℝ)
62 nnre 11219 . . . . . . . . . . . 12 (𝑋 ∈ ℕ → 𝑋 ∈ ℝ)
6362adantl 473 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ℕ) → 𝑋 ∈ ℝ)
6463, 50remulcld 10262 . . . . . . . . . 10 ((𝜑𝑋 ∈ ℕ) → (𝑋 · 𝑈) ∈ ℝ)
6556nn0ge0d 11546 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ℕ) → 0 ≤ 𝑋)
6648rpge0d 12069 . . . . . . . . . . . 12 (𝜑 → 0 ≤ 𝑈)
6766adantr 472 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ℕ) → 0 ≤ 𝑈)
6863, 50, 65, 67mulge0d 10796 . . . . . . . . . 10 ((𝜑𝑋 ∈ ℕ) → 0 ≤ (𝑋 · 𝑈))
69 flge0nn0 12815 . . . . . . . . . 10 (((𝑋 · 𝑈) ∈ ℝ ∧ 0 ≤ (𝑋 · 𝑈)) → (⌊‘(𝑋 · 𝑈)) ∈ ℕ0)
7064, 68, 69syl2anc 696 . . . . . . . . 9 ((𝜑𝑋 ∈ ℕ) → (⌊‘(𝑋 · 𝑈)) ∈ ℕ0)
71 peano2nn0 11525 . . . . . . . . 9 ((⌊‘(𝑋 · 𝑈)) ∈ ℕ0 → ((⌊‘(𝑋 · 𝑈)) + 1) ∈ ℕ0)
7270, 71syl 17 . . . . . . . 8 ((𝜑𝑋 ∈ ℕ) → ((⌊‘(𝑋 · 𝑈)) + 1) ∈ ℕ0)
7372nn0red 11544 . . . . . . 7 ((𝜑𝑋 ∈ ℕ) → ((⌊‘(𝑋 · 𝑈)) + 1) ∈ ℝ)
7461, 73remulcld 10262 . . . . . 6 ((𝜑𝑋 ∈ ℕ) → (𝑀 · ((⌊‘(𝑋 · 𝑈)) + 1)) ∈ ℝ)
7528, 72reexpcld 13219 . . . . . 6 ((𝜑𝑋 ∈ ℕ) → (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1)) ∈ ℝ)
7674, 75remulcld 10262 . . . . 5 ((𝜑𝑋 ∈ ℕ) → ((𝑀 · ((⌊‘(𝑋 · 𝑈)) + 1)) · (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1))) ∈ ℝ)
77 peano2re 10401 . . . . . . . . 9 (𝑈 ∈ ℝ → (𝑈 + 1) ∈ ℝ)
7850, 77syl 17 . . . . . . . 8 ((𝜑𝑋 ∈ ℕ) → (𝑈 + 1) ∈ ℝ)
7963, 78remulcld 10262 . . . . . . 7 ((𝜑𝑋 ∈ ℕ) → (𝑋 · (𝑈 + 1)) ∈ ℝ)
8061, 79remulcld 10262 . . . . . 6 ((𝜑𝑋 ∈ ℕ) → (𝑀 · (𝑋 · (𝑈 + 1))) ∈ ℝ)
8151, 56reexpcld 13219 . . . . . . 7 ((𝜑𝑋 ∈ ℕ) → ((𝑇𝑐𝑈)↑𝑋) ∈ ℝ)
8281, 28remulcld 10262 . . . . . 6 ((𝜑𝑋 ∈ ℕ) → (((𝑇𝑐𝑈)↑𝑋) · 𝑇) ∈ ℝ)
8380, 82remulcld 10262 . . . . 5 ((𝜑𝑋 ∈ ℕ) → ((𝑀 · (𝑋 · (𝑈 + 1))) · (((𝑇𝑐𝑈)↑𝑋) · 𝑇)) ∈ ℝ)
841adantr 472 . . . . . . 7 ((𝜑𝑋 ∈ ℕ) → 𝐹𝐴)
857adantr 472 . . . . . . 7 ((𝜑𝑋 ∈ ℕ) → 𝑁 ∈ ℚ)
869, 8qabvexp 25514 . . . . . . 7 ((𝐹𝐴𝑁 ∈ ℚ ∧ 𝑋 ∈ ℕ0) → (𝐹‘(𝑁𝑋)) = ((𝐹𝑁)↑𝑋))
8784, 85, 56, 86syl3anc 1477 . . . . . 6 ((𝜑𝑋 ∈ ℕ) → (𝐹‘(𝑁𝑋)) = ((𝐹𝑁)↑𝑋))
8863recnd 10260 . . . . . . . . . . . . . . . 16 ((𝜑𝑋 ∈ ℕ) → 𝑋 ∈ ℂ)
8943rpred 12065 . . . . . . . . . . . . . . . . . 18 (𝜑 → (log‘𝑁) ∈ ℝ)
9089recnd 10260 . . . . . . . . . . . . . . . . 17 (𝜑 → (log‘𝑁) ∈ ℂ)
9190adantr 472 . . . . . . . . . . . . . . . 16 ((𝜑𝑋 ∈ ℕ) → (log‘𝑁) ∈ ℂ)
9246rpred 12065 . . . . . . . . . . . . . . . . . 18 (𝜑 → (log‘𝑀) ∈ ℝ)
9392recnd 10260 . . . . . . . . . . . . . . . . 17 (𝜑 → (log‘𝑀) ∈ ℂ)
9493adantr 472 . . . . . . . . . . . . . . . 16 ((𝜑𝑋 ∈ ℕ) → (log‘𝑀) ∈ ℂ)
9546adantr 472 . . . . . . . . . . . . . . . . 17 ((𝜑𝑋 ∈ ℕ) → (log‘𝑀) ∈ ℝ+)
9695rpne0d 12070 . . . . . . . . . . . . . . . 16 ((𝜑𝑋 ∈ ℕ) → (log‘𝑀) ≠ 0)
9788, 91, 94, 96divassd 11028 . . . . . . . . . . . . . . 15 ((𝜑𝑋 ∈ ℕ) → ((𝑋 · (log‘𝑁)) / (log‘𝑀)) = (𝑋 · ((log‘𝑁) / (log‘𝑀))))
9840oveq2i 6824 . . . . . . . . . . . . . . 15 (𝑋 · 𝑈) = (𝑋 · ((log‘𝑁) / (log‘𝑀)))
9997, 98syl6eqr 2812 . . . . . . . . . . . . . 14 ((𝜑𝑋 ∈ ℕ) → ((𝑋 · (log‘𝑁)) / (log‘𝑀)) = (𝑋 · 𝑈))
10099oveq1d 6828 . . . . . . . . . . . . 13 ((𝜑𝑋 ∈ ℕ) → (((𝑋 · (log‘𝑁)) / (log‘𝑀)) · (log‘𝑀)) = ((𝑋 · 𝑈) · (log‘𝑀)))
10188, 91mulcld 10252 . . . . . . . . . . . . . 14 ((𝜑𝑋 ∈ ℕ) → (𝑋 · (log‘𝑁)) ∈ ℂ)
102101, 94, 96divcan1d 10994 . . . . . . . . . . . . 13 ((𝜑𝑋 ∈ ℕ) → (((𝑋 · (log‘𝑁)) / (log‘𝑀)) · (log‘𝑀)) = (𝑋 · (log‘𝑁)))
103100, 102eqtr3d 2796 . . . . . . . . . . . 12 ((𝜑𝑋 ∈ ℕ) → ((𝑋 · 𝑈) · (log‘𝑀)) = (𝑋 · (log‘𝑁)))
104 flltp1 12795 . . . . . . . . . . . . . 14 ((𝑋 · 𝑈) ∈ ℝ → (𝑋 · 𝑈) < ((⌊‘(𝑋 · 𝑈)) + 1))
10564, 104syl 17 . . . . . . . . . . . . 13 ((𝜑𝑋 ∈ ℕ) → (𝑋 · 𝑈) < ((⌊‘(𝑋 · 𝑈)) + 1))
10664, 73, 95, 105ltmul1dd 12120 . . . . . . . . . . . 12 ((𝜑𝑋 ∈ ℕ) → ((𝑋 · 𝑈) · (log‘𝑀)) < (((⌊‘(𝑋 · 𝑈)) + 1) · (log‘𝑀)))
107103, 106eqbrtrrd 4828 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ℕ) → (𝑋 · (log‘𝑁)) < (((⌊‘(𝑋 · 𝑈)) + 1) · (log‘𝑀)))
10889adantr 472 . . . . . . . . . . . . 13 ((𝜑𝑋 ∈ ℕ) → (log‘𝑁) ∈ ℝ)
10963, 108remulcld 10262 . . . . . . . . . . . 12 ((𝜑𝑋 ∈ ℕ) → (𝑋 · (log‘𝑁)) ∈ ℝ)
11092adantr 472 . . . . . . . . . . . . 13 ((𝜑𝑋 ∈ ℕ) → (log‘𝑀) ∈ ℝ)
11173, 110remulcld 10262 . . . . . . . . . . . 12 ((𝜑𝑋 ∈ ℕ) → (((⌊‘(𝑋 · 𝑈)) + 1) · (log‘𝑀)) ∈ ℝ)
112 eflt 15046 . . . . . . . . . . . 12 (((𝑋 · (log‘𝑁)) ∈ ℝ ∧ (((⌊‘(𝑋 · 𝑈)) + 1) · (log‘𝑀)) ∈ ℝ) → ((𝑋 · (log‘𝑁)) < (((⌊‘(𝑋 · 𝑈)) + 1) · (log‘𝑀)) ↔ (exp‘(𝑋 · (log‘𝑁))) < (exp‘(((⌊‘(𝑋 · 𝑈)) + 1) · (log‘𝑀)))))
113109, 111, 112syl2anc 696 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ℕ) → ((𝑋 · (log‘𝑁)) < (((⌊‘(𝑋 · 𝑈)) + 1) · (log‘𝑀)) ↔ (exp‘(𝑋 · (log‘𝑁))) < (exp‘(((⌊‘(𝑋 · 𝑈)) + 1) · (log‘𝑀)))))
114107, 113mpbid 222 . . . . . . . . . 10 ((𝜑𝑋 ∈ ℕ) → (exp‘(𝑋 · (log‘𝑁))) < (exp‘(((⌊‘(𝑋 · 𝑈)) + 1) · (log‘𝑀))))
1155nnrpd 12063 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℝ+)
116 nnz 11591 . . . . . . . . . . 11 (𝑋 ∈ ℕ → 𝑋 ∈ ℤ)
117 reexplog 24540 . . . . . . . . . . 11 ((𝑁 ∈ ℝ+𝑋 ∈ ℤ) → (𝑁𝑋) = (exp‘(𝑋 · (log‘𝑁))))
118115, 116, 117syl2an 495 . . . . . . . . . 10 ((𝜑𝑋 ∈ ℕ) → (𝑁𝑋) = (exp‘(𝑋 · (log‘𝑁))))
11960nnrpd 12063 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ℕ) → 𝑀 ∈ ℝ+)
12072nn0zd 11672 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ℕ) → ((⌊‘(𝑋 · 𝑈)) + 1) ∈ ℤ)
121 reexplog 24540 . . . . . . . . . . 11 ((𝑀 ∈ ℝ+ ∧ ((⌊‘(𝑋 · 𝑈)) + 1) ∈ ℤ) → (𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) = (exp‘(((⌊‘(𝑋 · 𝑈)) + 1) · (log‘𝑀))))
122119, 120, 121syl2anc 696 . . . . . . . . . 10 ((𝜑𝑋 ∈ ℕ) → (𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) = (exp‘(((⌊‘(𝑋 · 𝑈)) + 1) · (log‘𝑀))))
123114, 118, 1223brtr4d 4836 . . . . . . . . 9 ((𝜑𝑋 ∈ ℕ) → (𝑁𝑋) < (𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)))
124 nnexpcl 13067 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℕ0) → (𝑁𝑋) ∈ ℕ)
1255, 55, 124syl2an 495 . . . . . . . . . 10 ((𝜑𝑋 ∈ ℕ) → (𝑁𝑋) ∈ ℕ)
12660, 72nnexpcld 13224 . . . . . . . . . 10 ((𝜑𝑋 ∈ ℕ) → (𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) ∈ ℕ)
127 nnltlem1 11636 . . . . . . . . . 10 (((𝑁𝑋) ∈ ℕ ∧ (𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) ∈ ℕ) → ((𝑁𝑋) < (𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) ↔ (𝑁𝑋) ≤ ((𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) − 1)))
128125, 126, 127syl2anc 696 . . . . . . . . 9 ((𝜑𝑋 ∈ ℕ) → ((𝑁𝑋) < (𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) ↔ (𝑁𝑋) ≤ ((𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) − 1)))
129123, 128mpbid 222 . . . . . . . 8 ((𝜑𝑋 ∈ ℕ) → (𝑁𝑋) ≤ ((𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) − 1))
130125nnnn0d 11543 . . . . . . . . . 10 ((𝜑𝑋 ∈ ℕ) → (𝑁𝑋) ∈ ℕ0)
131 nn0uz 11915 . . . . . . . . . 10 0 = (ℤ‘0)
132130, 131syl6eleq 2849 . . . . . . . . 9 ((𝜑𝑋 ∈ ℕ) → (𝑁𝑋) ∈ (ℤ‘0))
133126nnzd 11673 . . . . . . . . . 10 ((𝜑𝑋 ∈ ℕ) → (𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) ∈ ℤ)
134 peano2zm 11612 . . . . . . . . . 10 ((𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) ∈ ℤ → ((𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) − 1) ∈ ℤ)
135133, 134syl 17 . . . . . . . . 9 ((𝜑𝑋 ∈ ℕ) → ((𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) − 1) ∈ ℤ)
136 elfz5 12527 . . . . . . . . 9 (((𝑁𝑋) ∈ (ℤ‘0) ∧ ((𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) − 1) ∈ ℤ) → ((𝑁𝑋) ∈ (0...((𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) − 1)) ↔ (𝑁𝑋) ≤ ((𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) − 1)))
137132, 135, 136syl2anc 696 . . . . . . . 8 ((𝜑𝑋 ∈ ℕ) → ((𝑁𝑋) ∈ (0...((𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) − 1)) ↔ (𝑁𝑋) ≤ ((𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) − 1)))
138129, 137mpbird 247 . . . . . . 7 ((𝜑𝑋 ∈ ℕ) → (𝑁𝑋) ∈ (0...((𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) − 1)))
139 padic.j . . . . . . . . . 10 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))
140 ostth.k . . . . . . . . . 10 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1))
141 ostth2.3 . . . . . . . . . 10 (𝜑 → 1 < (𝐹𝑁))
142 ostth2.4 . . . . . . . . . 10 𝑅 = ((log‘(𝐹𝑁)) / (log‘𝑁))
143 ostth2.6 . . . . . . . . . 10 𝑆 = ((log‘(𝐹𝑀)) / (log‘𝑀))
1449, 8, 139, 140, 1, 2, 141, 142, 17, 143, 15ostth2lem2 25522 . . . . . . . . 9 ((𝜑 ∧ ((⌊‘(𝑋 · 𝑈)) + 1) ∈ ℕ0 ∧ (𝑁𝑋) ∈ (0...((𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) − 1))) → (𝐹‘(𝑁𝑋)) ≤ ((𝑀 · ((⌊‘(𝑋 · 𝑈)) + 1)) · (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1))))
1451443expia 1115 . . . . . . . 8 ((𝜑 ∧ ((⌊‘(𝑋 · 𝑈)) + 1) ∈ ℕ0) → ((𝑁𝑋) ∈ (0...((𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) − 1)) → (𝐹‘(𝑁𝑋)) ≤ ((𝑀 · ((⌊‘(𝑋 · 𝑈)) + 1)) · (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1)))))
14672, 145syldan 488 . . . . . . 7 ((𝜑𝑋 ∈ ℕ) → ((𝑁𝑋) ∈ (0...((𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) − 1)) → (𝐹‘(𝑁𝑋)) ≤ ((𝑀 · ((⌊‘(𝑋 · 𝑈)) + 1)) · (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1)))))
147138, 146mpd 15 . . . . . 6 ((𝜑𝑋 ∈ ℕ) → (𝐹‘(𝑁𝑋)) ≤ ((𝑀 · ((⌊‘(𝑋 · 𝑈)) + 1)) · (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1))))
14887, 147eqbrtrrd 4828 . . . . 5 ((𝜑𝑋 ∈ ℕ) → ((𝐹𝑁)↑𝑋) ≤ ((𝑀 · ((⌊‘(𝑋 · 𝑈)) + 1)) · (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1))))
14980, 75remulcld 10262 . . . . . 6 ((𝜑𝑋 ∈ ℕ) → ((𝑀 · (𝑋 · (𝑈 + 1))) · (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1))) ∈ ℝ)
150 peano2re 10401 . . . . . . . . . 10 ((𝑋 · 𝑈) ∈ ℝ → ((𝑋 · 𝑈) + 1) ∈ ℝ)
15164, 150syl 17 . . . . . . . . 9 ((𝜑𝑋 ∈ ℕ) → ((𝑋 · 𝑈) + 1) ∈ ℝ)
15270nn0red 11544 . . . . . . . . . 10 ((𝜑𝑋 ∈ ℕ) → (⌊‘(𝑋 · 𝑈)) ∈ ℝ)
153 1red 10247 . . . . . . . . . 10 ((𝜑𝑋 ∈ ℕ) → 1 ∈ ℝ)
154 flle 12794 . . . . . . . . . . 11 ((𝑋 · 𝑈) ∈ ℝ → (⌊‘(𝑋 · 𝑈)) ≤ (𝑋 · 𝑈))
15564, 154syl 17 . . . . . . . . . 10 ((𝜑𝑋 ∈ ℕ) → (⌊‘(𝑋 · 𝑈)) ≤ (𝑋 · 𝑈))
156152, 64, 153, 155leadd1dd 10833 . . . . . . . . 9 ((𝜑𝑋 ∈ ℕ) → ((⌊‘(𝑋 · 𝑈)) + 1) ≤ ((𝑋 · 𝑈) + 1))
157 nnge1 11238 . . . . . . . . . . . 12 (𝑋 ∈ ℕ → 1 ≤ 𝑋)
158157adantl 473 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ℕ) → 1 ≤ 𝑋)
159153, 63, 64, 158leadd2dd 10834 . . . . . . . . . 10 ((𝜑𝑋 ∈ ℕ) → ((𝑋 · 𝑈) + 1) ≤ ((𝑋 · 𝑈) + 𝑋))
16050recnd 10260 . . . . . . . . . . . 12 ((𝜑𝑋 ∈ ℕ) → 𝑈 ∈ ℂ)
161153recnd 10260 . . . . . . . . . . . 12 ((𝜑𝑋 ∈ ℕ) → 1 ∈ ℂ)
16288, 160, 161adddid 10256 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ℕ) → (𝑋 · (𝑈 + 1)) = ((𝑋 · 𝑈) + (𝑋 · 1)))
16388mulid1d 10249 . . . . . . . . . . . 12 ((𝜑𝑋 ∈ ℕ) → (𝑋 · 1) = 𝑋)
164163oveq2d 6829 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ℕ) → ((𝑋 · 𝑈) + (𝑋 · 1)) = ((𝑋 · 𝑈) + 𝑋))
165162, 164eqtrd 2794 . . . . . . . . . 10 ((𝜑𝑋 ∈ ℕ) → (𝑋 · (𝑈 + 1)) = ((𝑋 · 𝑈) + 𝑋))
166159, 165breqtrrd 4832 . . . . . . . . 9 ((𝜑𝑋 ∈ ℕ) → ((𝑋 · 𝑈) + 1) ≤ (𝑋 · (𝑈 + 1)))
16773, 151, 79, 156, 166letrd 10386 . . . . . . . 8 ((𝜑𝑋 ∈ ℕ) → ((⌊‘(𝑋 · 𝑈)) + 1) ≤ (𝑋 · (𝑈 + 1)))
16860nngt0d 11256 . . . . . . . . 9 ((𝜑𝑋 ∈ ℕ) → 0 < 𝑀)
169 lemul2 11068 . . . . . . . . 9 ((((⌊‘(𝑋 · 𝑈)) + 1) ∈ ℝ ∧ (𝑋 · (𝑈 + 1)) ∈ ℝ ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀)) → (((⌊‘(𝑋 · 𝑈)) + 1) ≤ (𝑋 · (𝑈 + 1)) ↔ (𝑀 · ((⌊‘(𝑋 · 𝑈)) + 1)) ≤ (𝑀 · (𝑋 · (𝑈 + 1)))))
17073, 79, 61, 168, 169syl112anc 1481 . . . . . . . 8 ((𝜑𝑋 ∈ ℕ) → (((⌊‘(𝑋 · 𝑈)) + 1) ≤ (𝑋 · (𝑈 + 1)) ↔ (𝑀 · ((⌊‘(𝑋 · 𝑈)) + 1)) ≤ (𝑀 · (𝑋 · (𝑈 + 1)))))
171167, 170mpbid 222 . . . . . . 7 ((𝜑𝑋 ∈ ℕ) → (𝑀 · ((⌊‘(𝑋 · 𝑈)) + 1)) ≤ (𝑀 · (𝑋 · (𝑈 + 1))))
172 expgt0 13087 . . . . . . . . 9 ((𝑇 ∈ ℝ ∧ ((⌊‘(𝑋 · 𝑈)) + 1) ∈ ℤ ∧ 0 < 𝑇) → 0 < (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1)))
17328, 120, 37, 172syl3anc 1477 . . . . . . . 8 ((𝜑𝑋 ∈ ℕ) → 0 < (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1)))
174 lemul1 11067 . . . . . . . 8 (((𝑀 · ((⌊‘(𝑋 · 𝑈)) + 1)) ∈ ℝ ∧ (𝑀 · (𝑋 · (𝑈 + 1))) ∈ ℝ ∧ ((𝑇↑((⌊‘(𝑋 · 𝑈)) + 1)) ∈ ℝ ∧ 0 < (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1)))) → ((𝑀 · ((⌊‘(𝑋 · 𝑈)) + 1)) ≤ (𝑀 · (𝑋 · (𝑈 + 1))) ↔ ((𝑀 · ((⌊‘(𝑋 · 𝑈)) + 1)) · (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1))) ≤ ((𝑀 · (𝑋 · (𝑈 + 1))) · (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1)))))
17574, 80, 75, 173, 174syl112anc 1481 . . . . . . 7 ((𝜑𝑋 ∈ ℕ) → ((𝑀 · ((⌊‘(𝑋 · 𝑈)) + 1)) ≤ (𝑀 · (𝑋 · (𝑈 + 1))) ↔ ((𝑀 · ((⌊‘(𝑋 · 𝑈)) + 1)) · (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1))) ≤ ((𝑀 · (𝑋 · (𝑈 + 1))) · (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1)))))
176171, 175mpbid 222 . . . . . 6 ((𝜑𝑋 ∈ ℕ) → ((𝑀 · ((⌊‘(𝑋 · 𝑈)) + 1)) · (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1))) ≤ ((𝑀 · (𝑋 · (𝑈 + 1))) · (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1))))
17728recnd 10260 . . . . . . . . 9 ((𝜑𝑋 ∈ ℕ) → 𝑇 ∈ ℂ)
178177, 70expp1d 13203 . . . . . . . 8 ((𝜑𝑋 ∈ ℕ) → (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1)) = ((𝑇↑(⌊‘(𝑋 · 𝑈))) · 𝑇))
17935adantr 472 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ℕ) → 1 ≤ 𝑇)
180 remulcl 10213 . . . . . . . . . . . 12 ((𝑈 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (𝑈 · 𝑋) ∈ ℝ)
18149, 62, 180syl2an 495 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ℕ) → (𝑈 · 𝑋) ∈ ℝ)
18288, 160mulcomd 10253 . . . . . . . . . . . 12 ((𝜑𝑋 ∈ ℕ) → (𝑋 · 𝑈) = (𝑈 · 𝑋))
183155, 182breqtrd 4830 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ℕ) → (⌊‘(𝑋 · 𝑈)) ≤ (𝑈 · 𝑋))
18428, 179, 152, 181, 183cxplead 24666 . . . . . . . . . 10 ((𝜑𝑋 ∈ ℕ) → (𝑇𝑐(⌊‘(𝑋 · 𝑈))) ≤ (𝑇𝑐(𝑈 · 𝑋)))
185 cxpexp 24613 . . . . . . . . . . 11 ((𝑇 ∈ ℂ ∧ (⌊‘(𝑋 · 𝑈)) ∈ ℕ0) → (𝑇𝑐(⌊‘(𝑋 · 𝑈))) = (𝑇↑(⌊‘(𝑋 · 𝑈))))
186177, 70, 185syl2anc 696 . . . . . . . . . 10 ((𝜑𝑋 ∈ ℕ) → (𝑇𝑐(⌊‘(𝑋 · 𝑈))) = (𝑇↑(⌊‘(𝑋 · 𝑈))))
18738, 50, 88cxpmuld 24679 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ℕ) → (𝑇𝑐(𝑈 · 𝑋)) = ((𝑇𝑐𝑈)↑𝑐𝑋))
188 cxpexp 24613 . . . . . . . . . . . 12 (((𝑇𝑐𝑈) ∈ ℂ ∧ 𝑋 ∈ ℕ0) → ((𝑇𝑐𝑈)↑𝑐𝑋) = ((𝑇𝑐𝑈)↑𝑋))
18952, 56, 188syl2anc 696 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ℕ) → ((𝑇𝑐𝑈)↑𝑐𝑋) = ((𝑇𝑐𝑈)↑𝑋))
190187, 189eqtrd 2794 . . . . . . . . . 10 ((𝜑𝑋 ∈ ℕ) → (𝑇𝑐(𝑈 · 𝑋)) = ((𝑇𝑐𝑈)↑𝑋))
191184, 186, 1903brtr3d 4835 . . . . . . . . 9 ((𝜑𝑋 ∈ ℕ) → (𝑇↑(⌊‘(𝑋 · 𝑈))) ≤ ((𝑇𝑐𝑈)↑𝑋))
19228, 70reexpcld 13219 . . . . . . . . . 10 ((𝜑𝑋 ∈ ℕ) → (𝑇↑(⌊‘(𝑋 · 𝑈))) ∈ ℝ)
193192, 81, 38lemul1d 12108 . . . . . . . . 9 ((𝜑𝑋 ∈ ℕ) → ((𝑇↑(⌊‘(𝑋 · 𝑈))) ≤ ((𝑇𝑐𝑈)↑𝑋) ↔ ((𝑇↑(⌊‘(𝑋 · 𝑈))) · 𝑇) ≤ (((𝑇𝑐𝑈)↑𝑋) · 𝑇)))
194191, 193mpbid 222 . . . . . . . 8 ((𝜑𝑋 ∈ ℕ) → ((𝑇↑(⌊‘(𝑋 · 𝑈))) · 𝑇) ≤ (((𝑇𝑐𝑈)↑𝑋) · 𝑇))
195178, 194eqbrtrd 4826 . . . . . . 7 ((𝜑𝑋 ∈ ℕ) → (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1)) ≤ (((𝑇𝑐𝑈)↑𝑋) · 𝑇))
196 nngt0 11241 . . . . . . . . . . 11 (𝑋 ∈ ℕ → 0 < 𝑋)
197196adantl 473 . . . . . . . . . 10 ((𝜑𝑋 ∈ ℕ) → 0 < 𝑋)
198 0red 10233 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ℕ) → 0 ∈ ℝ)
19948adantr 472 . . . . . . . . . . . 12 ((𝜑𝑋 ∈ ℕ) → 𝑈 ∈ ℝ+)
200199rpgt0d 12068 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ℕ) → 0 < 𝑈)
20150ltp1d 11146 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ℕ) → 𝑈 < (𝑈 + 1))
202198, 50, 78, 200, 201lttrd 10390 . . . . . . . . . 10 ((𝜑𝑋 ∈ ℕ) → 0 < (𝑈 + 1))
20363, 78, 197, 202mulgt0d 10384 . . . . . . . . 9 ((𝜑𝑋 ∈ ℕ) → 0 < (𝑋 · (𝑈 + 1)))
20461, 79, 168, 203mulgt0d 10384 . . . . . . . 8 ((𝜑𝑋 ∈ ℕ) → 0 < (𝑀 · (𝑋 · (𝑈 + 1))))
205 lemul2 11068 . . . . . . . 8 (((𝑇↑((⌊‘(𝑋 · 𝑈)) + 1)) ∈ ℝ ∧ (((𝑇𝑐𝑈)↑𝑋) · 𝑇) ∈ ℝ ∧ ((𝑀 · (𝑋 · (𝑈 + 1))) ∈ ℝ ∧ 0 < (𝑀 · (𝑋 · (𝑈 + 1))))) → ((𝑇↑((⌊‘(𝑋 · 𝑈)) + 1)) ≤ (((𝑇𝑐𝑈)↑𝑋) · 𝑇) ↔ ((𝑀 · (𝑋 · (𝑈 + 1))) · (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1))) ≤ ((𝑀 · (𝑋 · (𝑈 + 1))) · (((𝑇𝑐𝑈)↑𝑋) · 𝑇))))
20675, 82, 80, 204, 205syl112anc 1481 . . . . . . 7 ((𝜑𝑋 ∈ ℕ) → ((𝑇↑((⌊‘(𝑋 · 𝑈)) + 1)) ≤ (((𝑇𝑐𝑈)↑𝑋) · 𝑇) ↔ ((𝑀 · (𝑋 · (𝑈 + 1))) · (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1))) ≤ ((𝑀 · (𝑋 · (𝑈 + 1))) · (((𝑇𝑐𝑈)↑𝑋) · 𝑇))))
207195, 206mpbid 222 . . . . . 6 ((𝜑𝑋 ∈ ℕ) → ((𝑀 · (𝑋 · (𝑈 + 1))) · (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1))) ≤ ((𝑀 · (𝑋 · (𝑈 + 1))) · (((𝑇𝑐𝑈)↑𝑋) · 𝑇)))
20876, 149, 83, 176, 207letrd 10386 . . . . 5 ((𝜑𝑋 ∈ ℕ) → ((𝑀 · ((⌊‘(𝑋 · 𝑈)) + 1)) · (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1))) ≤ ((𝑀 · (𝑋 · (𝑈 + 1))) · (((𝑇𝑐𝑈)↑𝑋) · 𝑇)))
20959, 76, 83, 148, 208letrd 10386 . . . 4 ((𝜑𝑋 ∈ ℕ) → ((𝐹𝑁)↑𝑋) ≤ ((𝑀 · (𝑋 · (𝑈 + 1))) · (((𝑇𝑐𝑈)↑𝑋) · 𝑇)))
21080recnd 10260 . . . . . 6 ((𝜑𝑋 ∈ ℕ) → (𝑀 · (𝑋 · (𝑈 + 1))) ∈ ℂ)
21181recnd 10260 . . . . . 6 ((𝜑𝑋 ∈ ℕ) → ((𝑇𝑐𝑈)↑𝑋) ∈ ℂ)
212210, 211, 177mul12d 10437 . . . . 5 ((𝜑𝑋 ∈ ℕ) → ((𝑀 · (𝑋 · (𝑈 + 1))) · (((𝑇𝑐𝑈)↑𝑋) · 𝑇)) = (((𝑇𝑐𝑈)↑𝑋) · ((𝑀 · (𝑋 · (𝑈 + 1))) · 𝑇)))
21361recnd 10260 . . . . . . . 8 ((𝜑𝑋 ∈ ℕ) → 𝑀 ∈ ℂ)
21479recnd 10260 . . . . . . . 8 ((𝜑𝑋 ∈ ℕ) → (𝑋 · (𝑈 + 1)) ∈ ℂ)
215213, 214, 177mul32d 10438 . . . . . . 7 ((𝜑𝑋 ∈ ℕ) → ((𝑀 · (𝑋 · (𝑈 + 1))) · 𝑇) = ((𝑀 · 𝑇) · (𝑋 · (𝑈 + 1))))
216213, 177mulcld 10252 . . . . . . . 8 ((𝜑𝑋 ∈ ℕ) → (𝑀 · 𝑇) ∈ ℂ)
21778recnd 10260 . . . . . . . 8 ((𝜑𝑋 ∈ ℕ) → (𝑈 + 1) ∈ ℂ)
218216, 88, 217mul12d 10437 . . . . . . 7 ((𝜑𝑋 ∈ ℕ) → ((𝑀 · 𝑇) · (𝑋 · (𝑈 + 1))) = (𝑋 · ((𝑀 · 𝑇) · (𝑈 + 1))))
219215, 218eqtrd 2794 . . . . . 6 ((𝜑𝑋 ∈ ℕ) → ((𝑀 · (𝑋 · (𝑈 + 1))) · 𝑇) = (𝑋 · ((𝑀 · 𝑇) · (𝑈 + 1))))
220219oveq2d 6829 . . . . 5 ((𝜑𝑋 ∈ ℕ) → (((𝑇𝑐𝑈)↑𝑋) · ((𝑀 · (𝑋 · (𝑈 + 1))) · 𝑇)) = (((𝑇𝑐𝑈)↑𝑋) · (𝑋 · ((𝑀 · 𝑇) · (𝑈 + 1)))))
221212, 220eqtrd 2794 . . . 4 ((𝜑𝑋 ∈ ℕ) → ((𝑀 · (𝑋 · (𝑈 + 1))) · (((𝑇𝑐𝑈)↑𝑋) · 𝑇)) = (((𝑇𝑐𝑈)↑𝑋) · (𝑋 · ((𝑀 · 𝑇) · (𝑈 + 1)))))
222209, 221breqtrd 4830 . . 3 ((𝜑𝑋 ∈ ℕ) → ((𝐹𝑁)↑𝑋) ≤ (((𝑇𝑐𝑈)↑𝑋) · (𝑋 · ((𝑀 · 𝑇) · (𝑈 + 1)))))
22361, 28remulcld 10262 . . . . . 6 ((𝜑𝑋 ∈ ℕ) → (𝑀 · 𝑇) ∈ ℝ)
224223, 78remulcld 10262 . . . . 5 ((𝜑𝑋 ∈ ℕ) → ((𝑀 · 𝑇) · (𝑈 + 1)) ∈ ℝ)
22563, 224remulcld 10262 . . . 4 ((𝜑𝑋 ∈ ℕ) → (𝑋 · ((𝑀 · 𝑇) · (𝑈 + 1))) ∈ ℝ)
226116adantl 473 . . . . 5 ((𝜑𝑋 ∈ ℕ) → 𝑋 ∈ ℤ)
22753, 226rpexpcld 13226 . . . 4 ((𝜑𝑋 ∈ ℕ) → ((𝑇𝑐𝑈)↑𝑋) ∈ ℝ+)
22859, 225, 227ledivmuld 12118 . . 3 ((𝜑𝑋 ∈ ℕ) → ((((𝐹𝑁)↑𝑋) / ((𝑇𝑐𝑈)↑𝑋)) ≤ (𝑋 · ((𝑀 · 𝑇) · (𝑈 + 1))) ↔ ((𝐹𝑁)↑𝑋) ≤ (((𝑇𝑐𝑈)↑𝑋) · (𝑋 · ((𝑀 · 𝑇) · (𝑈 + 1))))))
229222, 228mpbird 247 . 2 ((𝜑𝑋 ∈ ℕ) → (((𝐹𝑁)↑𝑋) / ((𝑇𝑐𝑈)↑𝑋)) ≤ (𝑋 · ((𝑀 · 𝑇) · (𝑈 + 1))))
23057, 229eqbrtrd 4826 1 ((𝜑𝑋 ∈ ℕ) → (((𝐹𝑁) / (𝑇𝑐𝑈))↑𝑋) ≤ (𝑋 · ((𝑀 · 𝑇) · (𝑈 + 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  ifcif 4230   class class class wbr 4804  cmpt 4881  cfv 6049  (class class class)co 6813  cc 10126  cr 10127  0cc0 10128  1c1 10129   + caddc 10131   · cmul 10133   < clt 10266  cle 10267  cmin 10458  -cneg 10459   / cdiv 10876  cn 11212  2c2 11262  0cn0 11484  cz 11569  cuz 11879  cq 11981  +crp 12025  ...cfz 12519  cfl 12785  cexp 13054  expce 14991  cprime 15587   pCnt cpc 15743  s cress 16060  AbsValcabv 19018  fldccnfld 19948  logclog 24500  𝑐ccxp 24501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206  ax-addf 10207  ax-mulf 10208
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-om 7231  df-1st 7333  df-2nd 7334  df-supp 7464  df-tpos 7521  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-er 7911  df-map 8025  df-pm 8026  df-ixp 8075  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fsupp 8441  df-fi 8482  df-sup 8513  df-inf 8514  df-oi 8580  df-card 8955  df-cda 9182  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-dec 11686  df-uz 11880  df-q 11982  df-rp 12026  df-xneg 12139  df-xadd 12140  df-xmul 12141  df-ioo 12372  df-ioc 12373  df-ico 12374  df-icc 12375  df-fz 12520  df-fzo 12660  df-fl 12787  df-mod 12863  df-seq 12996  df-exp 13055  df-fac 13255  df-bc 13284  df-hash 13312  df-shft 14006  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-limsup 14401  df-clim 14418  df-rlim 14419  df-sum 14616  df-ef 14997  df-sin 14999  df-cos 15000  df-pi 15002  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-starv 16158  df-sca 16159  df-vsca 16160  df-ip 16161  df-tset 16162  df-ple 16163  df-ds 16166  df-unif 16167  df-hom 16168  df-cco 16169  df-rest 16285  df-topn 16286  df-0g 16304  df-gsum 16305  df-topgen 16306  df-pt 16307  df-prds 16310  df-xrs 16364  df-qtop 16369  df-imas 16370  df-xps 16372  df-mre 16448  df-mrc 16449  df-acs 16451  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-grp 17626  df-minusg 17627  df-mulg 17742  df-subg 17792  df-cntz 17950  df-cmn 18395  df-mgp 18690  df-ur 18702  df-ring 18749  df-cring 18750  df-oppr 18823  df-dvdsr 18841  df-unit 18842  df-invr 18872  df-dvr 18883  df-drng 18951  df-subrg 18980  df-abv 19019  df-psmet 19940  df-xmet 19941  df-met 19942  df-bl 19943  df-mopn 19944  df-fbas 19945  df-fg 19946  df-cnfld 19949  df-top 20901  df-topon 20918  df-topsp 20939  df-bases 20952  df-cld 21025  df-ntr 21026  df-cls 21027  df-nei 21104  df-lp 21142  df-perf 21143  df-cn 21233  df-cnp 21234  df-haus 21321  df-tx 21567  df-hmeo 21760  df-fil 21851  df-fm 21943  df-flim 21944  df-flf 21945  df-xms 22326  df-ms 22327  df-tms 22328  df-cncf 22882  df-limc 23829  df-dv 23830  df-log 24502  df-cxp 24503
This theorem is referenced by:  ostth2lem4  25524
  Copyright terms: Public domain W3C validator