MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ostth2 Structured version   Visualization version   GIF version

Theorem ostth2 25525
Description: - Lemma for ostth 25527: regular case. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
qrng.q 𝑄 = (ℂflds ℚ)
qabsabv.a 𝐴 = (AbsVal‘𝑄)
padic.j 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))
ostth.k 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1))
ostth.1 (𝜑𝐹𝐴)
ostth2.2 (𝜑𝑁 ∈ (ℤ‘2))
ostth2.3 (𝜑 → 1 < (𝐹𝑁))
ostth2.4 𝑅 = ((log‘(𝐹𝑁)) / (log‘𝑁))
Assertion
Ref Expression
ostth2 (𝜑 → ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)))
Distinct variable groups:   𝑞,𝑎,𝑥,𝑦,𝜑   𝐽,𝑎,𝑦   𝐴,𝑎,𝑞,𝑥,𝑦   𝑥,𝑁,𝑦   𝑥,𝑄,𝑦   𝐹,𝑎,𝑞,𝑦   𝑅,𝑎,𝑞,𝑦   𝑥,𝐹
Allowed substitution hints:   𝑄(𝑞,𝑎)   𝑅(𝑥)   𝐽(𝑥,𝑞)   𝐾(𝑥,𝑦,𝑞,𝑎)   𝑁(𝑞,𝑎)

Proof of Theorem ostth2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ostth2.4 . . . . 5 𝑅 = ((log‘(𝐹𝑁)) / (log‘𝑁))
2 ostth.1 . . . . . . . 8 (𝜑𝐹𝐴)
3 ostth2.2 . . . . . . . . . . 11 (𝜑𝑁 ∈ (ℤ‘2))
4 eluz2b2 11954 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 1 < 𝑁))
53, 4sylib 208 . . . . . . . . . 10 (𝜑 → (𝑁 ∈ ℕ ∧ 1 < 𝑁))
65simpld 477 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
7 nnq 11994 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℚ)
86, 7syl 17 . . . . . . . 8 (𝜑𝑁 ∈ ℚ)
9 qabsabv.a . . . . . . . . 9 𝐴 = (AbsVal‘𝑄)
10 qrng.q . . . . . . . . . 10 𝑄 = (ℂflds ℚ)
1110qrngbas 25507 . . . . . . . . 9 ℚ = (Base‘𝑄)
129, 11abvcl 19026 . . . . . . . 8 ((𝐹𝐴𝑁 ∈ ℚ) → (𝐹𝑁) ∈ ℝ)
132, 8, 12syl2anc 696 . . . . . . 7 (𝜑 → (𝐹𝑁) ∈ ℝ)
14 ostth2.3 . . . . . . 7 (𝜑 → 1 < (𝐹𝑁))
1513, 14rplogcld 24574 . . . . . 6 (𝜑 → (log‘(𝐹𝑁)) ∈ ℝ+)
166nnred 11227 . . . . . . 7 (𝜑𝑁 ∈ ℝ)
175simprd 482 . . . . . . 7 (𝜑 → 1 < 𝑁)
1816, 17rplogcld 24574 . . . . . 6 (𝜑 → (log‘𝑁) ∈ ℝ+)
1915, 18rpdivcld 12082 . . . . 5 (𝜑 → ((log‘(𝐹𝑁)) / (log‘𝑁)) ∈ ℝ+)
201, 19syl5eqel 2843 . . . 4 (𝜑𝑅 ∈ ℝ+)
2120rpred 12065 . . 3 (𝜑𝑅 ∈ ℝ)
2220rpgt0d 12068 . . 3 (𝜑 → 0 < 𝑅)
236nnnn0d 11543 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ0)
2410, 9qabvle 25513 . . . . . . . . 9 ((𝐹𝐴𝑁 ∈ ℕ0) → (𝐹𝑁) ≤ 𝑁)
252, 23, 24syl2anc 696 . . . . . . . 8 (𝜑 → (𝐹𝑁) ≤ 𝑁)
266nnne0d 11257 . . . . . . . . . . 11 (𝜑𝑁 ≠ 0)
2710qrng0 25509 . . . . . . . . . . . 12 0 = (0g𝑄)
289, 11, 27abvgt0 19030 . . . . . . . . . . 11 ((𝐹𝐴𝑁 ∈ ℚ ∧ 𝑁 ≠ 0) → 0 < (𝐹𝑁))
292, 8, 26, 28syl3anc 1477 . . . . . . . . . 10 (𝜑 → 0 < (𝐹𝑁))
3013, 29elrpd 12062 . . . . . . . . 9 (𝜑 → (𝐹𝑁) ∈ ℝ+)
3130reeflogd 24569 . . . . . . . 8 (𝜑 → (exp‘(log‘(𝐹𝑁))) = (𝐹𝑁))
326nnrpd 12063 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ+)
3332reeflogd 24569 . . . . . . . 8 (𝜑 → (exp‘(log‘𝑁)) = 𝑁)
3425, 31, 333brtr4d 4836 . . . . . . 7 (𝜑 → (exp‘(log‘(𝐹𝑁))) ≤ (exp‘(log‘𝑁)))
3515rpred 12065 . . . . . . . 8 (𝜑 → (log‘(𝐹𝑁)) ∈ ℝ)
3632relogcld 24568 . . . . . . . 8 (𝜑 → (log‘𝑁) ∈ ℝ)
37 efle 15047 . . . . . . . 8 (((log‘(𝐹𝑁)) ∈ ℝ ∧ (log‘𝑁) ∈ ℝ) → ((log‘(𝐹𝑁)) ≤ (log‘𝑁) ↔ (exp‘(log‘(𝐹𝑁))) ≤ (exp‘(log‘𝑁))))
3835, 36, 37syl2anc 696 . . . . . . 7 (𝜑 → ((log‘(𝐹𝑁)) ≤ (log‘𝑁) ↔ (exp‘(log‘(𝐹𝑁))) ≤ (exp‘(log‘𝑁))))
3934, 38mpbird 247 . . . . . 6 (𝜑 → (log‘(𝐹𝑁)) ≤ (log‘𝑁))
4018rpcnd 12067 . . . . . . 7 (𝜑 → (log‘𝑁) ∈ ℂ)
4140mulid1d 10249 . . . . . 6 (𝜑 → ((log‘𝑁) · 1) = (log‘𝑁))
4239, 41breqtrrd 4832 . . . . 5 (𝜑 → (log‘(𝐹𝑁)) ≤ ((log‘𝑁) · 1))
43 1red 10247 . . . . . 6 (𝜑 → 1 ∈ ℝ)
4435, 43, 18ledivmuld 12118 . . . . 5 (𝜑 → (((log‘(𝐹𝑁)) / (log‘𝑁)) ≤ 1 ↔ (log‘(𝐹𝑁)) ≤ ((log‘𝑁) · 1)))
4542, 44mpbird 247 . . . 4 (𝜑 → ((log‘(𝐹𝑁)) / (log‘𝑁)) ≤ 1)
461, 45syl5eqbr 4839 . . 3 (𝜑𝑅 ≤ 1)
47 0xr 10278 . . . 4 0 ∈ ℝ*
48 1re 10231 . . . 4 1 ∈ ℝ
49 elioc2 12429 . . . 4 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → (𝑅 ∈ (0(,]1) ↔ (𝑅 ∈ ℝ ∧ 0 < 𝑅𝑅 ≤ 1)))
5047, 48, 49mp2an 710 . . 3 (𝑅 ∈ (0(,]1) ↔ (𝑅 ∈ ℝ ∧ 0 < 𝑅𝑅 ≤ 1))
5121, 22, 46, 50syl3anbrc 1429 . 2 (𝜑𝑅 ∈ (0(,]1))
5210, 9qabsabv 25517 . . . 4 (abs ↾ ℚ) ∈ 𝐴
53 fvres 6368 . . . . . . . 8 (𝑦 ∈ ℚ → ((abs ↾ ℚ)‘𝑦) = (abs‘𝑦))
5453oveq1d 6828 . . . . . . 7 (𝑦 ∈ ℚ → (((abs ↾ ℚ)‘𝑦)↑𝑐𝑅) = ((abs‘𝑦)↑𝑐𝑅))
5554mpteq2ia 4892 . . . . . 6 (𝑦 ∈ ℚ ↦ (((abs ↾ ℚ)‘𝑦)↑𝑐𝑅)) = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅))
5655eqcomi 2769 . . . . 5 (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅)) = (𝑦 ∈ ℚ ↦ (((abs ↾ ℚ)‘𝑦)↑𝑐𝑅))
579, 11, 56abvcxp 25503 . . . 4 (((abs ↾ ℚ) ∈ 𝐴𝑅 ∈ (0(,]1)) → (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅)) ∈ 𝐴)
5852, 51, 57sylancr 698 . . 3 (𝜑 → (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅)) ∈ 𝐴)
59 eluzelz 11889 . . . . . 6 (𝑧 ∈ (ℤ‘2) → 𝑧 ∈ ℤ)
60 zq 11987 . . . . . 6 (𝑧 ∈ ℤ → 𝑧 ∈ ℚ)
61 fveq2 6352 . . . . . . . 8 (𝑦 = 𝑧 → (abs‘𝑦) = (abs‘𝑧))
6261oveq1d 6828 . . . . . . 7 (𝑦 = 𝑧 → ((abs‘𝑦)↑𝑐𝑅) = ((abs‘𝑧)↑𝑐𝑅))
63 eqid 2760 . . . . . . 7 (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅)) = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅))
64 ovex 6841 . . . . . . 7 ((abs‘𝑧)↑𝑐𝑅) ∈ V
6562, 63, 64fvmpt 6444 . . . . . 6 (𝑧 ∈ ℚ → ((𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅))‘𝑧) = ((abs‘𝑧)↑𝑐𝑅))
6659, 60, 653syl 18 . . . . 5 (𝑧 ∈ (ℤ‘2) → ((𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅))‘𝑧) = ((abs‘𝑧)↑𝑐𝑅))
6766adantl 473 . . . 4 ((𝜑𝑧 ∈ (ℤ‘2)) → ((𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅))‘𝑧) = ((abs‘𝑧)↑𝑐𝑅))
68 simpr 479 . . . . . . . . 9 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑧 ∈ (ℤ‘2))
69 eluz2b2 11954 . . . . . . . . 9 (𝑧 ∈ (ℤ‘2) ↔ (𝑧 ∈ ℕ ∧ 1 < 𝑧))
7068, 69sylib 208 . . . . . . . 8 ((𝜑𝑧 ∈ (ℤ‘2)) → (𝑧 ∈ ℕ ∧ 1 < 𝑧))
7170simpld 477 . . . . . . 7 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑧 ∈ ℕ)
7271nnred 11227 . . . . . 6 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑧 ∈ ℝ)
7371nnnn0d 11543 . . . . . . 7 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑧 ∈ ℕ0)
7473nn0ge0d 11546 . . . . . 6 ((𝜑𝑧 ∈ (ℤ‘2)) → 0 ≤ 𝑧)
7572, 74absidd 14360 . . . . 5 ((𝜑𝑧 ∈ (ℤ‘2)) → (abs‘𝑧) = 𝑧)
7675oveq1d 6828 . . . 4 ((𝜑𝑧 ∈ (ℤ‘2)) → ((abs‘𝑧)↑𝑐𝑅) = (𝑧𝑐𝑅))
7772recnd 10260 . . . . . 6 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑧 ∈ ℂ)
7871nnne0d 11257 . . . . . 6 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑧 ≠ 0)
7920rpcnd 12067 . . . . . . 7 (𝜑𝑅 ∈ ℂ)
8079adantr 472 . . . . . 6 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑅 ∈ ℂ)
8177, 78, 80cxpefd 24657 . . . . 5 ((𝜑𝑧 ∈ (ℤ‘2)) → (𝑧𝑐𝑅) = (exp‘(𝑅 · (log‘𝑧))))
82 padic.j . . . . . . . . . . 11 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))
83 ostth.k . . . . . . . . . . 11 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1))
842adantr 472 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝐹𝐴)
853adantr 472 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑁 ∈ (ℤ‘2))
8614adantr 472 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (ℤ‘2)) → 1 < (𝐹𝑁))
87 eqid 2760 . . . . . . . . . . 11 ((log‘(𝐹𝑧)) / (log‘𝑧)) = ((log‘(𝐹𝑧)) / (log‘𝑧))
88 eqid 2760 . . . . . . . . . . 11 if((𝐹𝑧) ≤ 1, 1, (𝐹𝑧)) = if((𝐹𝑧) ≤ 1, 1, (𝐹𝑧))
89 eqid 2760 . . . . . . . . . . 11 ((log‘𝑁) / (log‘𝑧)) = ((log‘𝑁) / (log‘𝑧))
9010, 9, 82, 83, 84, 85, 86, 1, 68, 87, 88, 89ostth2lem4 25524 . . . . . . . . . 10 ((𝜑𝑧 ∈ (ℤ‘2)) → (1 < (𝐹𝑧) ∧ 𝑅 ≤ ((log‘(𝐹𝑧)) / (log‘𝑧))))
9190simprd 482 . . . . . . . . 9 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑅 ≤ ((log‘(𝐹𝑧)) / (log‘𝑧)))
9290simpld 477 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (ℤ‘2)) → 1 < (𝐹𝑧))
93 eqid 2760 . . . . . . . . . . 11 if((𝐹𝑁) ≤ 1, 1, (𝐹𝑁)) = if((𝐹𝑁) ≤ 1, 1, (𝐹𝑁))
94 eqid 2760 . . . . . . . . . . 11 ((log‘𝑧) / (log‘𝑁)) = ((log‘𝑧) / (log‘𝑁))
9510, 9, 82, 83, 84, 68, 92, 87, 85, 1, 93, 94ostth2lem4 25524 . . . . . . . . . 10 ((𝜑𝑧 ∈ (ℤ‘2)) → (1 < (𝐹𝑁) ∧ ((log‘(𝐹𝑧)) / (log‘𝑧)) ≤ 𝑅))
9695simprd 482 . . . . . . . . 9 ((𝜑𝑧 ∈ (ℤ‘2)) → ((log‘(𝐹𝑧)) / (log‘𝑧)) ≤ 𝑅)
9721adantr 472 . . . . . . . . . 10 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑅 ∈ ℝ)
9859adantl 473 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑧 ∈ ℤ)
9998, 60syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑧 ∈ ℚ)
1009, 11abvcl 19026 . . . . . . . . . . . . . 14 ((𝐹𝐴𝑧 ∈ ℚ) → (𝐹𝑧) ∈ ℝ)
10184, 99, 100syl2anc 696 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (ℤ‘2)) → (𝐹𝑧) ∈ ℝ)
1029, 11, 27abvgt0 19030 . . . . . . . . . . . . . 14 ((𝐹𝐴𝑧 ∈ ℚ ∧ 𝑧 ≠ 0) → 0 < (𝐹𝑧))
10384, 99, 78, 102syl3anc 1477 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (ℤ‘2)) → 0 < (𝐹𝑧))
104101, 103elrpd 12062 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (ℤ‘2)) → (𝐹𝑧) ∈ ℝ+)
105104relogcld 24568 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (ℤ‘2)) → (log‘(𝐹𝑧)) ∈ ℝ)
10671nnrpd 12063 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑧 ∈ ℝ+)
107106relogcld 24568 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (ℤ‘2)) → (log‘𝑧) ∈ ℝ)
108 ef0 15020 . . . . . . . . . . . . . 14 (exp‘0) = 1
10970simprd 482 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ (ℤ‘2)) → 1 < 𝑧)
110106reeflogd 24569 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ (ℤ‘2)) → (exp‘(log‘𝑧)) = 𝑧)
111109, 110breqtrrd 4832 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (ℤ‘2)) → 1 < (exp‘(log‘𝑧)))
112108, 111syl5eqbr 4839 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (ℤ‘2)) → (exp‘0) < (exp‘(log‘𝑧)))
113 0re 10232 . . . . . . . . . . . . . 14 0 ∈ ℝ
114 eflt 15046 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ (log‘𝑧) ∈ ℝ) → (0 < (log‘𝑧) ↔ (exp‘0) < (exp‘(log‘𝑧))))
115113, 107, 114sylancr 698 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (ℤ‘2)) → (0 < (log‘𝑧) ↔ (exp‘0) < (exp‘(log‘𝑧))))
116112, 115mpbird 247 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (ℤ‘2)) → 0 < (log‘𝑧))
117116gt0ne0d 10784 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (ℤ‘2)) → (log‘𝑧) ≠ 0)
118105, 107, 117redivcld 11045 . . . . . . . . . 10 ((𝜑𝑧 ∈ (ℤ‘2)) → ((log‘(𝐹𝑧)) / (log‘𝑧)) ∈ ℝ)
11997, 118letri3d 10371 . . . . . . . . 9 ((𝜑𝑧 ∈ (ℤ‘2)) → (𝑅 = ((log‘(𝐹𝑧)) / (log‘𝑧)) ↔ (𝑅 ≤ ((log‘(𝐹𝑧)) / (log‘𝑧)) ∧ ((log‘(𝐹𝑧)) / (log‘𝑧)) ≤ 𝑅)))
12091, 96, 119mpbir2and 995 . . . . . . . 8 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑅 = ((log‘(𝐹𝑧)) / (log‘𝑧)))
121120oveq1d 6828 . . . . . . 7 ((𝜑𝑧 ∈ (ℤ‘2)) → (𝑅 · (log‘𝑧)) = (((log‘(𝐹𝑧)) / (log‘𝑧)) · (log‘𝑧)))
122105recnd 10260 . . . . . . . 8 ((𝜑𝑧 ∈ (ℤ‘2)) → (log‘(𝐹𝑧)) ∈ ℂ)
123107recnd 10260 . . . . . . . 8 ((𝜑𝑧 ∈ (ℤ‘2)) → (log‘𝑧) ∈ ℂ)
124122, 123, 117divcan1d 10994 . . . . . . 7 ((𝜑𝑧 ∈ (ℤ‘2)) → (((log‘(𝐹𝑧)) / (log‘𝑧)) · (log‘𝑧)) = (log‘(𝐹𝑧)))
125121, 124eqtrd 2794 . . . . . 6 ((𝜑𝑧 ∈ (ℤ‘2)) → (𝑅 · (log‘𝑧)) = (log‘(𝐹𝑧)))
126125fveq2d 6356 . . . . 5 ((𝜑𝑧 ∈ (ℤ‘2)) → (exp‘(𝑅 · (log‘𝑧))) = (exp‘(log‘(𝐹𝑧))))
127104reeflogd 24569 . . . . 5 ((𝜑𝑧 ∈ (ℤ‘2)) → (exp‘(log‘(𝐹𝑧))) = (𝐹𝑧))
12881, 126, 1273eqtrd 2798 . . . 4 ((𝜑𝑧 ∈ (ℤ‘2)) → (𝑧𝑐𝑅) = (𝐹𝑧))
12967, 76, 1283eqtrrd 2799 . . 3 ((𝜑𝑧 ∈ (ℤ‘2)) → (𝐹𝑧) = ((𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅))‘𝑧))
13010, 9, 2, 58, 129ostthlem1 25515 . 2 (𝜑𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅)))
131 oveq2 6821 . . . . 5 (𝑎 = 𝑅 → ((abs‘𝑦)↑𝑐𝑎) = ((abs‘𝑦)↑𝑐𝑅))
132131mpteq2dv 4897 . . . 4 (𝑎 = 𝑅 → (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅)))
133132eqeq2d 2770 . . 3 (𝑎 = 𝑅 → (𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ↔ 𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅))))
134133rspcev 3449 . 2 ((𝑅 ∈ (0(,]1) ∧ 𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅))) → ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)))
13551, 130, 134syl2anc 696 1 (𝜑 → ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wne 2932  wrex 3051  ifcif 4230   class class class wbr 4804  cmpt 4881  cres 5268  cfv 6049  (class class class)co 6813  cc 10126  cr 10127  0cc0 10128  1c1 10129   · cmul 10133  *cxr 10265   < clt 10266  cle 10267  -cneg 10459   / cdiv 10876  cn 11212  2c2 11262  0cn0 11484  cz 11569  cuz 11879  cq 11981  +crp 12025  (,]cioc 12369  cexp 13054  abscabs 14173  expce 14991  cprime 15587   pCnt cpc 15743  s cress 16060  AbsValcabv 19018  fldccnfld 19948  logclog 24500  𝑐ccxp 24501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206  ax-addf 10207  ax-mulf 10208
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-om 7231  df-1st 7333  df-2nd 7334  df-supp 7464  df-tpos 7521  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-er 7911  df-map 8025  df-pm 8026  df-ixp 8075  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fsupp 8441  df-fi 8482  df-sup 8513  df-inf 8514  df-oi 8580  df-card 8955  df-cda 9182  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-dec 11686  df-uz 11880  df-q 11982  df-rp 12026  df-xneg 12139  df-xadd 12140  df-xmul 12141  df-ioo 12372  df-ioc 12373  df-ico 12374  df-icc 12375  df-fz 12520  df-fzo 12660  df-fl 12787  df-mod 12863  df-seq 12996  df-exp 13055  df-fac 13255  df-bc 13284  df-hash 13312  df-shft 14006  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-limsup 14401  df-clim 14418  df-rlim 14419  df-sum 14616  df-ef 14997  df-sin 14999  df-cos 15000  df-pi 15002  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-starv 16158  df-sca 16159  df-vsca 16160  df-ip 16161  df-tset 16162  df-ple 16163  df-ds 16166  df-unif 16167  df-hom 16168  df-cco 16169  df-rest 16285  df-topn 16286  df-0g 16304  df-gsum 16305  df-topgen 16306  df-pt 16307  df-prds 16310  df-xrs 16364  df-qtop 16369  df-imas 16370  df-xps 16372  df-mre 16448  df-mrc 16449  df-acs 16451  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-grp 17626  df-minusg 17627  df-mulg 17742  df-subg 17792  df-cntz 17950  df-cmn 18395  df-mgp 18690  df-ur 18702  df-ring 18749  df-cring 18750  df-oppr 18823  df-dvdsr 18841  df-unit 18842  df-invr 18872  df-dvr 18883  df-drng 18951  df-subrg 18980  df-abv 19019  df-psmet 19940  df-xmet 19941  df-met 19942  df-bl 19943  df-mopn 19944  df-fbas 19945  df-fg 19946  df-cnfld 19949  df-top 20901  df-topon 20918  df-topsp 20939  df-bases 20952  df-cld 21025  df-ntr 21026  df-cls 21027  df-nei 21104  df-lp 21142  df-perf 21143  df-cn 21233  df-cnp 21234  df-haus 21321  df-tx 21567  df-hmeo 21760  df-fil 21851  df-fm 21943  df-flim 21944  df-flf 21945  df-xms 22326  df-ms 22327  df-tms 22328  df-cncf 22882  df-limc 23829  df-dv 23830  df-log 24502  df-cxp 24503
This theorem is referenced by:  ostth  25527
  Copyright terms: Public domain W3C validator