![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > orvcval2 | Structured version Visualization version GIF version |
Description: Another way to express the value of the preimage mapping operator. (Contributed by Thierry Arnoux, 19-Jan-2017.) |
Ref | Expression |
---|---|
orvcval.1 | ⊢ (𝜑 → Fun 𝑋) |
orvcval.2 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
orvcval.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑊) |
Ref | Expression |
---|---|
orvcval2 | ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) = {𝑧 ∈ dom 𝑋 ∣ (𝑋‘𝑧)𝑅𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orvcval.1 | . . 3 ⊢ (𝜑 → Fun 𝑋) | |
2 | orvcval.2 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
3 | orvcval.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑊) | |
4 | 1, 2, 3 | orvcval 30853 | . 2 ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) = (◡𝑋 “ {𝑦 ∣ 𝑦𝑅𝐴})) |
5 | funfn 6061 | . . . 4 ⊢ (Fun 𝑋 ↔ 𝑋 Fn dom 𝑋) | |
6 | 1, 5 | sylib 208 | . . 3 ⊢ (𝜑 → 𝑋 Fn dom 𝑋) |
7 | fncnvima2 6482 | . . 3 ⊢ (𝑋 Fn dom 𝑋 → (◡𝑋 “ {𝑦 ∣ 𝑦𝑅𝐴}) = {𝑧 ∈ dom 𝑋 ∣ (𝑋‘𝑧) ∈ {𝑦 ∣ 𝑦𝑅𝐴}}) | |
8 | 6, 7 | syl 17 | . 2 ⊢ (𝜑 → (◡𝑋 “ {𝑦 ∣ 𝑦𝑅𝐴}) = {𝑧 ∈ dom 𝑋 ∣ (𝑋‘𝑧) ∈ {𝑦 ∣ 𝑦𝑅𝐴}}) |
9 | fvex 6342 | . . . . 5 ⊢ (𝑋‘𝑧) ∈ V | |
10 | breq1 4787 | . . . . 5 ⊢ (𝑦 = (𝑋‘𝑧) → (𝑦𝑅𝐴 ↔ (𝑋‘𝑧)𝑅𝐴)) | |
11 | 9, 10 | elab 3499 | . . . 4 ⊢ ((𝑋‘𝑧) ∈ {𝑦 ∣ 𝑦𝑅𝐴} ↔ (𝑋‘𝑧)𝑅𝐴) |
12 | 11 | rabbii 3334 | . . 3 ⊢ {𝑧 ∈ dom 𝑋 ∣ (𝑋‘𝑧) ∈ {𝑦 ∣ 𝑦𝑅𝐴}} = {𝑧 ∈ dom 𝑋 ∣ (𝑋‘𝑧)𝑅𝐴} |
13 | 12 | a1i 11 | . 2 ⊢ (𝜑 → {𝑧 ∈ dom 𝑋 ∣ (𝑋‘𝑧) ∈ {𝑦 ∣ 𝑦𝑅𝐴}} = {𝑧 ∈ dom 𝑋 ∣ (𝑋‘𝑧)𝑅𝐴}) |
14 | 4, 8, 13 | 3eqtrd 2808 | 1 ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) = {𝑧 ∈ dom 𝑋 ∣ (𝑋‘𝑧)𝑅𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1630 ∈ wcel 2144 {cab 2756 {crab 3064 class class class wbr 4784 ◡ccnv 5248 dom cdm 5249 “ cima 5252 Fun wfun 6025 Fn wfn 6026 ‘cfv 6031 (class class class)co 6792 ∘RV/𝑐corvc 30851 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-sbc 3586 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-br 4785 df-opab 4845 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-fv 6039 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-orvc 30852 |
This theorem is referenced by: elorvc 30855 |
Copyright terms: Public domain | W3C validator |