![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > orvcval | Structured version Visualization version GIF version |
Description: Value of the preimage mapping operator applied on a given random variable and constant. (Contributed by Thierry Arnoux, 19-Jan-2017.) |
Ref | Expression |
---|---|
orvcval.1 | ⊢ (𝜑 → Fun 𝑋) |
orvcval.2 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
orvcval.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑊) |
Ref | Expression |
---|---|
orvcval | ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) = (◡𝑋 “ {𝑦 ∣ 𝑦𝑅𝐴})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-orvc 30849 | . . 3 ⊢ ∘RV/𝑐𝑅 = (𝑥 ∈ {𝑥 ∣ Fun 𝑥}, 𝑎 ∈ V ↦ (◡𝑥 “ {𝑦 ∣ 𝑦𝑅𝑎})) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → ∘RV/𝑐𝑅 = (𝑥 ∈ {𝑥 ∣ Fun 𝑥}, 𝑎 ∈ V ↦ (◡𝑥 “ {𝑦 ∣ 𝑦𝑅𝑎}))) |
3 | simpl 474 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑎 = 𝐴) → 𝑥 = 𝑋) | |
4 | 3 | cnveqd 5454 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑎 = 𝐴) → ◡𝑥 = ◡𝑋) |
5 | simpr 479 | . . . . . 6 ⊢ ((𝑥 = 𝑋 ∧ 𝑎 = 𝐴) → 𝑎 = 𝐴) | |
6 | 5 | breq2d 4817 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑎 = 𝐴) → (𝑦𝑅𝑎 ↔ 𝑦𝑅𝐴)) |
7 | 6 | abbidv 2880 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑎 = 𝐴) → {𝑦 ∣ 𝑦𝑅𝑎} = {𝑦 ∣ 𝑦𝑅𝐴}) |
8 | 4, 7 | imaeq12d 5626 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑎 = 𝐴) → (◡𝑥 “ {𝑦 ∣ 𝑦𝑅𝑎}) = (◡𝑋 “ {𝑦 ∣ 𝑦𝑅𝐴})) |
9 | 8 | adantl 473 | . 2 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑎 = 𝐴)) → (◡𝑥 “ {𝑦 ∣ 𝑦𝑅𝑎}) = (◡𝑋 “ {𝑦 ∣ 𝑦𝑅𝐴})) |
10 | orvcval.1 | . . 3 ⊢ (𝜑 → Fun 𝑋) | |
11 | orvcval.2 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
12 | funeq 6070 | . . . . 5 ⊢ (𝑥 = 𝑋 → (Fun 𝑥 ↔ Fun 𝑋)) | |
13 | 12 | elabg 3492 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ {𝑥 ∣ Fun 𝑥} ↔ Fun 𝑋)) |
14 | 11, 13 | syl 17 | . . 3 ⊢ (𝜑 → (𝑋 ∈ {𝑥 ∣ Fun 𝑥} ↔ Fun 𝑋)) |
15 | 10, 14 | mpbird 247 | . 2 ⊢ (𝜑 → 𝑋 ∈ {𝑥 ∣ Fun 𝑥}) |
16 | orvcval.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑊) | |
17 | elex 3353 | . . 3 ⊢ (𝐴 ∈ 𝑊 → 𝐴 ∈ V) | |
18 | 16, 17 | syl 17 | . 2 ⊢ (𝜑 → 𝐴 ∈ V) |
19 | cnvexg 7279 | . . 3 ⊢ (𝑋 ∈ 𝑉 → ◡𝑋 ∈ V) | |
20 | imaexg 7270 | . . 3 ⊢ (◡𝑋 ∈ V → (◡𝑋 “ {𝑦 ∣ 𝑦𝑅𝐴}) ∈ V) | |
21 | 11, 19, 20 | 3syl 18 | . 2 ⊢ (𝜑 → (◡𝑋 “ {𝑦 ∣ 𝑦𝑅𝐴}) ∈ V) |
22 | 2, 9, 15, 18, 21 | ovmpt2d 6955 | 1 ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) = (◡𝑋 “ {𝑦 ∣ 𝑦𝑅𝐴})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2140 {cab 2747 Vcvv 3341 class class class wbr 4805 ◡ccnv 5266 “ cima 5270 Fun wfun 6044 (class class class)co 6815 ↦ cmpt2 6817 ∘RV/𝑐corvc 30848 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ral 3056 df-rex 3057 df-rab 3060 df-v 3343 df-sbc 3578 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-br 4806 df-opab 4866 df-id 5175 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-iota 6013 df-fun 6052 df-fv 6058 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-orvc 30849 |
This theorem is referenced by: orvcval2 30851 orvcval4 30853 |
Copyright terms: Public domain | W3C validator |