![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > orvclteel | Structured version Visualization version GIF version |
Description: Preimage maps produced by the "lower than or equal" relation are measurable sets. (Contributed by Thierry Arnoux, 4-Feb-2017.) |
Ref | Expression |
---|---|
dstfrv.1 | ⊢ (𝜑 → 𝑃 ∈ Prob) |
dstfrv.2 | ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) |
orvclteel.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
Ref | Expression |
---|---|
orvclteel | ⊢ (𝜑 → (𝑋∘RV/𝑐 ≤ 𝐴) ∈ dom 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dstfrv.1 | . 2 ⊢ (𝜑 → 𝑃 ∈ Prob) | |
2 | dstfrv.2 | . 2 ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) | |
3 | orvclteel.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
4 | rexr 10269 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*) | |
5 | 4 | ad2antrl 766 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝐴)) → 𝑥 ∈ ℝ*) |
6 | mnflt 12142 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ → -∞ < 𝑥) | |
7 | 6 | ad2antrl 766 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝐴)) → -∞ < 𝑥) |
8 | simprr 813 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝐴)) → 𝑥 ≤ 𝐴) | |
9 | 7, 8 | jca 555 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝐴)) → (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴)) |
10 | 5, 9 | jca 555 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝐴)) → (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴))) |
11 | simprl 811 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴))) → 𝑥 ∈ ℝ*) | |
12 | 3 | adantr 472 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴))) → 𝐴 ∈ ℝ) |
13 | simprrl 823 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴))) → -∞ < 𝑥) | |
14 | simprrr 824 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴))) → 𝑥 ≤ 𝐴) | |
15 | xrre 12185 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℝ* ∧ 𝐴 ∈ ℝ) ∧ (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴)) → 𝑥 ∈ ℝ) | |
16 | 11, 12, 13, 14, 15 | syl22anc 1474 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴))) → 𝑥 ∈ ℝ) |
17 | 16, 14 | jca 555 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴))) → (𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝐴)) |
18 | 10, 17 | impbida 913 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝐴) ↔ (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴)))) |
19 | 18 | rabbidva2 3318 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴} = {𝑥 ∈ ℝ* ∣ (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴)}) |
20 | mnfxr 10280 | . . . . 5 ⊢ -∞ ∈ ℝ* | |
21 | 3 | rexrd 10273 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
22 | iocval 12397 | . . . . 5 ⊢ ((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (-∞(,]𝐴) = {𝑥 ∈ ℝ* ∣ (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴)}) | |
23 | 20, 21, 22 | sylancr 698 | . . . 4 ⊢ (𝜑 → (-∞(,]𝐴) = {𝑥 ∈ ℝ* ∣ (-∞ < 𝑥 ∧ 𝑥 ≤ 𝐴)}) |
24 | 19, 23 | eqtr4d 2789 | . . 3 ⊢ (𝜑 → {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴} = (-∞(,]𝐴)) |
25 | iocmnfcld 22765 | . . . 4 ⊢ (𝐴 ∈ ℝ → (-∞(,]𝐴) ∈ (Clsd‘(topGen‘ran (,)))) | |
26 | 3, 25 | syl 17 | . . 3 ⊢ (𝜑 → (-∞(,]𝐴) ∈ (Clsd‘(topGen‘ran (,)))) |
27 | 24, 26 | eqeltrd 2831 | . 2 ⊢ (𝜑 → {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴} ∈ (Clsd‘(topGen‘ran (,)))) |
28 | 1, 2, 3, 27 | orrvccel 30829 | 1 ⊢ (𝜑 → (𝑋∘RV/𝑐 ≤ 𝐴) ∈ dom 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1624 ∈ wcel 2131 {crab 3046 class class class wbr 4796 dom cdm 5258 ran crn 5259 ‘cfv 6041 (class class class)co 6805 ℝcr 10119 -∞cmnf 10256 ℝ*cxr 10257 < clt 10258 ≤ cle 10259 (,)cioo 12360 (,]cioc 12361 topGenctg 16292 Clsdccld 21014 Probcprb 30770 rRndVarcrrv 30803 ∘RV/𝑐corvc 30818 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-rep 4915 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 ax-inf2 8703 ax-ac2 9469 ax-cnex 10176 ax-resscn 10177 ax-1cn 10178 ax-icn 10179 ax-addcl 10180 ax-addrcl 10181 ax-mulcl 10182 ax-mulrcl 10183 ax-mulcom 10184 ax-addass 10185 ax-mulass 10186 ax-distr 10187 ax-i2m1 10188 ax-1ne0 10189 ax-1rid 10190 ax-rnegex 10191 ax-rrecex 10192 ax-cnre 10193 ax-pre-lttri 10194 ax-pre-lttrn 10195 ax-pre-ltadd 10196 ax-pre-mulgt0 10197 ax-pre-sup 10198 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1627 df-fal 1630 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-nel 3028 df-ral 3047 df-rex 3048 df-reu 3049 df-rmo 3050 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-pss 3723 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4581 df-int 4620 df-iun 4666 df-iin 4667 df-br 4797 df-opab 4857 df-mpt 4874 df-tr 4897 df-id 5166 df-eprel 5171 df-po 5179 df-so 5180 df-fr 5217 df-se 5218 df-we 5219 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-pred 5833 df-ord 5879 df-on 5880 df-lim 5881 df-suc 5882 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-isom 6050 df-riota 6766 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-om 7223 df-1st 7325 df-2nd 7326 df-wrecs 7568 df-recs 7629 df-rdg 7667 df-1o 7721 df-2o 7722 df-oadd 7725 df-er 7903 df-map 8017 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-sup 8505 df-inf 8506 df-oi 8572 df-card 8947 df-acn 8950 df-ac 9121 df-cda 9174 df-pnf 10260 df-mnf 10261 df-xr 10262 df-ltxr 10263 df-le 10264 df-sub 10452 df-neg 10453 df-div 10869 df-nn 11205 df-n0 11477 df-z 11562 df-uz 11872 df-q 11974 df-ioo 12364 df-ioc 12365 df-topgen 16298 df-top 20893 df-bases 20944 df-cld 21017 df-esum 30391 df-siga 30472 df-sigagen 30503 df-brsiga 30546 df-meas 30560 df-mbfm 30614 df-prob 30771 df-rrv 30804 df-orvc 30819 |
This theorem is referenced by: dstfrvunirn 30837 dstfrvinc 30839 dstfrvclim1 30840 |
Copyright terms: Public domain | W3C validator |