Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orvclteel Structured version   Visualization version   GIF version

Theorem orvclteel 30835
Description: Preimage maps produced by the "lower than or equal" relation are measurable sets. (Contributed by Thierry Arnoux, 4-Feb-2017.)
Hypotheses
Ref Expression
dstfrv.1 (𝜑𝑃 ∈ Prob)
dstfrv.2 (𝜑𝑋 ∈ (rRndVar‘𝑃))
orvclteel.1 (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
orvclteel (𝜑 → (𝑋RV/𝑐𝐴) ∈ dom 𝑃)

Proof of Theorem orvclteel
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dstfrv.1 . 2 (𝜑𝑃 ∈ Prob)
2 dstfrv.2 . 2 (𝜑𝑋 ∈ (rRndVar‘𝑃))
3 orvclteel.1 . 2 (𝜑𝐴 ∈ ℝ)
4 rexr 10269 . . . . . . . 8 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
54ad2antrl 766 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑥𝐴)) → 𝑥 ∈ ℝ*)
6 mnflt 12142 . . . . . . . . 9 (𝑥 ∈ ℝ → -∞ < 𝑥)
76ad2antrl 766 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑥𝐴)) → -∞ < 𝑥)
8 simprr 813 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑥𝐴)) → 𝑥𝐴)
97, 8jca 555 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑥𝐴)) → (-∞ < 𝑥𝑥𝐴))
105, 9jca 555 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑥𝐴)) → (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥𝑥𝐴)))
11 simprl 811 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥𝑥𝐴))) → 𝑥 ∈ ℝ*)
123adantr 472 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥𝑥𝐴))) → 𝐴 ∈ ℝ)
13 simprrl 823 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥𝑥𝐴))) → -∞ < 𝑥)
14 simprrr 824 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥𝑥𝐴))) → 𝑥𝐴)
15 xrre 12185 . . . . . . . 8 (((𝑥 ∈ ℝ*𝐴 ∈ ℝ) ∧ (-∞ < 𝑥𝑥𝐴)) → 𝑥 ∈ ℝ)
1611, 12, 13, 14, 15syl22anc 1474 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥𝑥𝐴))) → 𝑥 ∈ ℝ)
1716, 14jca 555 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥𝑥𝐴))) → (𝑥 ∈ ℝ ∧ 𝑥𝐴))
1810, 17impbida 913 . . . . 5 (𝜑 → ((𝑥 ∈ ℝ ∧ 𝑥𝐴) ↔ (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥𝑥𝐴))))
1918rabbidva2 3318 . . . 4 (𝜑 → {𝑥 ∈ ℝ ∣ 𝑥𝐴} = {𝑥 ∈ ℝ* ∣ (-∞ < 𝑥𝑥𝐴)})
20 mnfxr 10280 . . . . 5 -∞ ∈ ℝ*
213rexrd 10273 . . . . 5 (𝜑𝐴 ∈ ℝ*)
22 iocval 12397 . . . . 5 ((-∞ ∈ ℝ*𝐴 ∈ ℝ*) → (-∞(,]𝐴) = {𝑥 ∈ ℝ* ∣ (-∞ < 𝑥𝑥𝐴)})
2320, 21, 22sylancr 698 . . . 4 (𝜑 → (-∞(,]𝐴) = {𝑥 ∈ ℝ* ∣ (-∞ < 𝑥𝑥𝐴)})
2419, 23eqtr4d 2789 . . 3 (𝜑 → {𝑥 ∈ ℝ ∣ 𝑥𝐴} = (-∞(,]𝐴))
25 iocmnfcld 22765 . . . 4 (𝐴 ∈ ℝ → (-∞(,]𝐴) ∈ (Clsd‘(topGen‘ran (,))))
263, 25syl 17 . . 3 (𝜑 → (-∞(,]𝐴) ∈ (Clsd‘(topGen‘ran (,))))
2724, 26eqeltrd 2831 . 2 (𝜑 → {𝑥 ∈ ℝ ∣ 𝑥𝐴} ∈ (Clsd‘(topGen‘ran (,))))
281, 2, 3, 27orrvccel 30829 1 (𝜑 → (𝑋RV/𝑐𝐴) ∈ dom 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1624  wcel 2131  {crab 3046   class class class wbr 4796  dom cdm 5258  ran crn 5259  cfv 6041  (class class class)co 6805  cr 10119  -∞cmnf 10256  *cxr 10257   < clt 10258  cle 10259  (,)cioo 12360  (,]cioc 12361  topGenctg 16292  Clsdccld 21014  Probcprb 30770  rRndVarcrrv 30803  RV/𝑐corvc 30818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-inf2 8703  ax-ac2 9469  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197  ax-pre-sup 10198
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-fal 1630  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-iin 4667  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-se 5218  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-isom 6050  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-1st 7325  df-2nd 7326  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-2o 7722  df-oadd 7725  df-er 7903  df-map 8017  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-sup 8505  df-inf 8506  df-oi 8572  df-card 8947  df-acn 8950  df-ac 9121  df-cda 9174  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-div 10869  df-nn 11205  df-n0 11477  df-z 11562  df-uz 11872  df-q 11974  df-ioo 12364  df-ioc 12365  df-topgen 16298  df-top 20893  df-bases 20944  df-cld 21017  df-esum 30391  df-siga 30472  df-sigagen 30503  df-brsiga 30546  df-meas 30560  df-mbfm 30614  df-prob 30771  df-rrv 30804  df-orvc 30819
This theorem is referenced by:  dstfrvunirn  30837  dstfrvinc  30839  dstfrvclim1  30840
  Copyright terms: Public domain W3C validator