![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > orthin | Structured version Visualization version GIF version |
Description: The intersection of orthogonal subspaces is the zero subspace. (Contributed by NM, 24-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
orthin | ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ⊆ (⊥‘𝐵) → (𝐴 ∩ 𝐵) = 0ℋ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrin 3871 | . . . . . 6 ⊢ (𝐴 ⊆ (⊥‘𝐵) → (𝐴 ∩ 𝐵) ⊆ ((⊥‘𝐵) ∩ 𝐵)) | |
2 | incom 3838 | . . . . . 6 ⊢ ((⊥‘𝐵) ∩ 𝐵) = (𝐵 ∩ (⊥‘𝐵)) | |
3 | 1, 2 | syl6sseq 3684 | . . . . 5 ⊢ (𝐴 ⊆ (⊥‘𝐵) → (𝐴 ∩ 𝐵) ⊆ (𝐵 ∩ (⊥‘𝐵))) |
4 | ocin 28283 | . . . . . 6 ⊢ (𝐵 ∈ Sℋ → (𝐵 ∩ (⊥‘𝐵)) = 0ℋ) | |
5 | 4 | sseq2d 3666 | . . . . 5 ⊢ (𝐵 ∈ Sℋ → ((𝐴 ∩ 𝐵) ⊆ (𝐵 ∩ (⊥‘𝐵)) ↔ (𝐴 ∩ 𝐵) ⊆ 0ℋ)) |
6 | 3, 5 | syl5ib 234 | . . . 4 ⊢ (𝐵 ∈ Sℋ → (𝐴 ⊆ (⊥‘𝐵) → (𝐴 ∩ 𝐵) ⊆ 0ℋ)) |
7 | 6 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ⊆ (⊥‘𝐵) → (𝐴 ∩ 𝐵) ⊆ 0ℋ)) |
8 | shincl 28368 | . . . 4 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ∩ 𝐵) ∈ Sℋ ) | |
9 | sh0le 28427 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) ∈ Sℋ → 0ℋ ⊆ (𝐴 ∩ 𝐵)) | |
10 | 8, 9 | syl 17 | . . 3 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → 0ℋ ⊆ (𝐴 ∩ 𝐵)) |
11 | 7, 10 | jctird 566 | . 2 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ⊆ (⊥‘𝐵) → ((𝐴 ∩ 𝐵) ⊆ 0ℋ ∧ 0ℋ ⊆ (𝐴 ∩ 𝐵)))) |
12 | eqss 3651 | . 2 ⊢ ((𝐴 ∩ 𝐵) = 0ℋ ↔ ((𝐴 ∩ 𝐵) ⊆ 0ℋ ∧ 0ℋ ⊆ (𝐴 ∩ 𝐵))) | |
13 | 11, 12 | syl6ibr 242 | 1 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ⊆ (⊥‘𝐵) → (𝐴 ∩ 𝐵) = 0ℋ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∩ cin 3606 ⊆ wss 3607 ‘cfv 5926 Sℋ csh 27913 ⊥cort 27915 0ℋc0h 27920 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-hilex 27984 ax-hfvadd 27985 ax-hv0cl 27988 ax-hfvmul 27990 ax-hvmul0 27995 ax-hfi 28064 ax-his2 28068 ax-his3 28069 ax-his4 28070 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-map 7901 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-ltxr 10117 df-nn 11059 df-hlim 27957 df-sh 28192 df-ch 28206 df-oc 28237 df-ch0 28238 |
This theorem is referenced by: atomli 29369 chirredlem3 29379 |
Copyright terms: Public domain | W3C validator |