![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > orrvcval4 | Structured version Visualization version GIF version |
Description: The value of the preimage mapping operator can be restricted to preimages of subsets of RR. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
Ref | Expression |
---|---|
orrvccel.1 | ⊢ (𝜑 → 𝑃 ∈ Prob) |
orrvccel.2 | ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) |
orrvccel.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
orrvcval4 | ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) = (◡𝑋 “ {𝑦 ∈ ℝ ∣ 𝑦𝑅𝐴})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orrvccel.1 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ Prob) | |
2 | domprobsiga 30813 | . . . 4 ⊢ (𝑃 ∈ Prob → dom 𝑃 ∈ ∪ ran sigAlgebra) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → dom 𝑃 ∈ ∪ ran sigAlgebra) |
4 | retop 22785 | . . . 4 ⊢ (topGen‘ran (,)) ∈ Top | |
5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → (topGen‘ran (,)) ∈ Top) |
6 | orrvccel.2 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) | |
7 | 1 | rrvmbfm 30844 | . . . . 5 ⊢ (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ 𝑋 ∈ (dom 𝑃MblFnM𝔅ℝ))) |
8 | 6, 7 | mpbid 222 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (dom 𝑃MblFnM𝔅ℝ)) |
9 | df-brsiga 30585 | . . . . 5 ⊢ 𝔅ℝ = (sigaGen‘(topGen‘ran (,))) | |
10 | 9 | oveq2i 6804 | . . . 4 ⊢ (dom 𝑃MblFnM𝔅ℝ) = (dom 𝑃MblFnM(sigaGen‘(topGen‘ran (,)))) |
11 | 8, 10 | syl6eleq 2860 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (dom 𝑃MblFnM(sigaGen‘(topGen‘ran (,))))) |
12 | orrvccel.4 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
13 | 3, 5, 11, 12 | orvcval4 30862 | . 2 ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) = (◡𝑋 “ {𝑦 ∈ ∪ (topGen‘ran (,)) ∣ 𝑦𝑅𝐴})) |
14 | uniretop 22786 | . . . 4 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
15 | rabeq 3342 | . . . 4 ⊢ (ℝ = ∪ (topGen‘ran (,)) → {𝑦 ∈ ℝ ∣ 𝑦𝑅𝐴} = {𝑦 ∈ ∪ (topGen‘ran (,)) ∣ 𝑦𝑅𝐴}) | |
16 | 14, 15 | ax-mp 5 | . . 3 ⊢ {𝑦 ∈ ℝ ∣ 𝑦𝑅𝐴} = {𝑦 ∈ ∪ (topGen‘ran (,)) ∣ 𝑦𝑅𝐴} |
17 | 16 | imaeq2i 5605 | . 2 ⊢ (◡𝑋 “ {𝑦 ∈ ℝ ∣ 𝑦𝑅𝐴}) = (◡𝑋 “ {𝑦 ∈ ∪ (topGen‘ran (,)) ∣ 𝑦𝑅𝐴}) |
18 | 13, 17 | syl6eqr 2823 | 1 ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) = (◡𝑋 “ {𝑦 ∈ ℝ ∣ 𝑦𝑅𝐴})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ∈ wcel 2145 {crab 3065 ∪ cuni 4574 class class class wbr 4786 ◡ccnv 5248 dom cdm 5249 ran crn 5250 “ cima 5252 ‘cfv 6031 (class class class)co 6793 ℝcr 10137 (,)cioo 12380 topGenctg 16306 Topctop 20918 sigAlgebracsiga 30510 sigaGencsigagen 30541 𝔅ℝcbrsiga 30584 MblFnMcmbfm 30652 Probcprb 30809 rRndVarcrrv 30842 ∘RV/𝑐corvc 30857 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-pre-lttri 10212 ax-pre-lttrn 10213 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-fal 1637 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-po 5170 df-so 5171 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-1st 7315 df-2nd 7316 df-er 7896 df-map 8011 df-en 8110 df-dom 8111 df-sdom 8112 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-ioo 12384 df-topgen 16312 df-top 20919 df-bases 20971 df-esum 30430 df-siga 30511 df-sigagen 30542 df-brsiga 30585 df-meas 30599 df-mbfm 30653 df-prob 30810 df-rrv 30843 df-orvc 30858 |
This theorem is referenced by: orvcelval 30870 dstfrvel 30875 orvclteinc 30877 |
Copyright terms: Public domain | W3C validator |