![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orim12i | Structured version Visualization version GIF version |
Description: Disjoin antecedents and consequents of two premises. (Contributed by NM, 6-Jun-1994.) (Proof shortened by Wolf Lammen, 25-Jul-2012.) |
Ref | Expression |
---|---|
orim12i.1 | ⊢ (𝜑 → 𝜓) |
orim12i.2 | ⊢ (𝜒 → 𝜃) |
Ref | Expression |
---|---|
orim12i | ⊢ ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orim12i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | orcd 406 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜃)) |
3 | orim12i.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
4 | 3 | olcd 407 | . 2 ⊢ (𝜒 → (𝜓 ∨ 𝜃)) |
5 | 2, 4 | jaoi 393 | 1 ⊢ ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-or 384 |
This theorem is referenced by: orim1i 538 orim2i 539 prlem2 1026 ifpor 1041 eueq3 3414 pwssun 5049 xpima 5611 funcnvuni 7161 2oconcl 7628 fin23lem23 9186 fin23lem19 9196 fin1a2lem13 9272 fin1a2s 9274 nn0ge0 11356 elfzlmr 12622 hash2pwpr 13296 trclfvg 13800 mreexexdOLD 16356 xpcbas 16865 odcl 18001 gexcl 18041 ang180lem4 24587 elim2ifim 29490 locfinref 30036 volmeas 30422 nepss 31725 funpsstri 31789 fvresval 31791 dvasin 33626 dvacos 33627 relexpxpmin 38326 clsk1indlem3 38658 elsprel 42050 resolution 42873 |
Copyright terms: Public domain | W3C validator |