![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orim12d | Structured version Visualization version GIF version |
Description: Disjoin antecedents and consequents in a deduction. (Contributed by NM, 10-May-1994.) |
Ref | Expression |
---|---|
orim12d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
orim12d.2 | ⊢ (𝜑 → (𝜃 → 𝜏)) |
Ref | Expression |
---|---|
orim12d | ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → (𝜒 ∨ 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orim12d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | orim12d.2 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) | |
3 | pm3.48 896 | . 2 ⊢ (((𝜓 → 𝜒) ∧ (𝜃 → 𝜏)) → ((𝜓 ∨ 𝜃) → (𝜒 ∨ 𝜏))) | |
4 | 1, 2, 3 | syl2anc 694 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → (𝜒 ∨ 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 |
This theorem is referenced by: orim1d 902 orim2d 903 3orim123d 1447 preq12b 4413 prel12 4414 propeqop 4999 fr2nr 5121 sossfld 5615 ordtri3or 5793 ordelinel 5863 funun 5970 soisores 6617 sorpsscmpl 6990 suceloni 7055 ordunisuc2 7086 fnse 7339 oaord 7672 omord2 7692 omcan 7694 oeord 7713 oecan 7714 nnaord 7744 nnmord 7757 omsmo 7779 swoer 7817 unxpwdom 8535 rankxplim3 8782 cdainflem 9051 ackbij2 9103 sornom 9137 fin23lem20 9197 fpwwe2lem10 9499 inatsk 9638 ltadd2 10179 ltord1 10592 ltmul1 10911 lt2msq 10946 mul2lt0bi 11974 xmullem2 12133 difreicc 12342 fzospliti 12539 om2uzlti 12789 om2uzlt2i 12790 om2uzf1oi 12792 absor 14084 ruclem12 15014 dvdslelem 15078 odd2np1lem 15111 odd2np1 15112 isprm6 15473 pythagtrip 15586 pc2dvds 15630 mreexexlem4d 16354 mreexexd 16355 mreexexdOLD 16356 irredrmul 18753 mplsubrglem 19487 znidomb 19958 ppttop 20859 filconn 21734 trufil 21761 ufildr 21782 plycj 24078 cosord 24323 logdivlt 24412 isosctrlem2 24594 atans2 24703 wilthlem2 24840 basellem3 24854 lgsdir2lem4 25098 pntpbnd1 25320 mirhl 25619 axcontlem2 25890 axcontlem4 25892 ex-natded5.13-2 27403 hiidge0 28083 chirredlem4 29380 disjxpin 29527 iocinif 29671 erdszelem11 31309 erdsze2lem2 31312 dfon2lem5 31816 trpredrec 31862 nofv 31935 nolesgn2o 31949 btwnconn1lem14 32332 btwnconn2 32334 poimir 33572 ispridlc 33999 lcvexchlem4 34642 lcvexchlem5 34643 paddss1 35421 paddss2 35422 rexzrexnn0 37685 pell14qrdich 37750 acongsym 37860 dvdsacongtr 37868 or3or 38636 clsk1indlem3 38658 nn0eo 42647 |
Copyright terms: Public domain | W3C validator |