![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oridm | Structured version Visualization version GIF version |
Description: Idempotent law for disjunction. Theorem *4.25 of [WhiteheadRussell] p. 117. (Contributed by NM, 11-May-1993.) (Proof shortened by Andrew Salmon, 16-Apr-2011.) (Proof shortened by Wolf Lammen, 10-Mar-2013.) |
Ref | Expression |
---|---|
oridm | ⊢ ((𝜑 ∨ 𝜑) ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm1.2 534 | . 2 ⊢ ((𝜑 ∨ 𝜑) → 𝜑) | |
2 | pm2.07 410 | . 2 ⊢ (𝜑 → (𝜑 ∨ 𝜑)) | |
3 | 1, 2 | impbii 199 | 1 ⊢ ((𝜑 ∨ 𝜑) ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∨ wo 382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-or 384 |
This theorem is referenced by: pm4.25 536 orordi 551 orordir 552 truortru 1550 falorfal 1553 unidm 3789 preqsnd 4423 preqsn 4424 preqsnOLD 4425 suceloni 7055 tz7.48lem 7581 msq0i 10712 msq0d 10714 prmdvdsexp 15474 metn0 22212 rrxcph 23226 nb3grprlem2 26327 pdivsq 31761 pm11.7 38913 |
Copyright terms: Public domain | W3C validator |