![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ori | Structured version Visualization version GIF version |
Description: Infer implication from disjunction. (Contributed by NM, 11-Jun-1994.) |
Ref | Expression |
---|---|
ori.1 | ⊢ (𝜑 ∨ 𝜓) |
Ref | Expression |
---|---|
ori | ⊢ (¬ 𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ori.1 | . 2 ⊢ (𝜑 ∨ 𝜓) | |
2 | df-or 384 | . 2 ⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) | |
3 | 1, 2 | mpbi 220 | 1 ⊢ (¬ 𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-or 384 |
This theorem is referenced by: 3ori 1501 mtpor 1808 exmoeu 2604 moanim 2631 moexex 2643 mo2icl 3491 mosubopt 5076 fvrn0 6329 eliman0 6336 dff3 6487 onuninsuci 7157 omelon2 7194 infensuc 8254 rankxpsuc 8858 cardlim 8911 alephreg 9517 tskcard 9716 sinhalfpilem 24335 sltres 32042 |
Copyright terms: Public domain | W3C validator |