![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orel1 | Structured version Visualization version GIF version |
Description: Elimination of disjunction by denial of a disjunct. Theorem *2.55 of [WhiteheadRussell] p. 107. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Wolf Lammen, 21-Jul-2012.) |
Ref | Expression |
---|---|
orel1 | ⊢ (¬ 𝜑 → ((𝜑 ∨ 𝜓) → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.53 387 | . 2 ⊢ ((𝜑 ∨ 𝜓) → (¬ 𝜑 → 𝜓)) | |
2 | 1 | com12 32 | 1 ⊢ (¬ 𝜑 → ((𝜑 ∨ 𝜓) → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-or 384 |
This theorem is referenced by: pm2.25 418 biorf 419 3orel1 1058 prel12 4414 xpcan 5605 funun 5970 sorpssuni 6988 sorpssint 6989 soxp 7335 ackbij1lem18 9097 ackbij1b 9099 fincssdom 9183 fin23lem30 9202 fin1a2lem13 9272 pythagtriplem4 15571 evlslem3 19562 zringlpirlem3 19882 psgnodpm 19982 orngsqr 29932 elzdif0 30152 qqhval2lem 30153 eulerpartlemsv2 30548 eulerpartlemv 30554 eulerpartlemf 30560 eulerpartlemgh 30568 3orel13 31724 dfon2lem4 31815 dfon2lem6 31817 nosepdmlem 31958 dfrdg4 32183 rankeq1o 32403 wl-orel12 33424 poimirlem31 33570 pellfund14gap 37768 wepwsolem 37929 fmul01lt1lem1 40134 cncfiooicclem1 40424 etransclem24 40793 nnfoctbdjlem 40990 |
Copyright terms: Public domain | W3C validator |