![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordwe | Structured version Visualization version GIF version |
Description: Epsilon well-orders every ordinal. Proposition 7.4 of [TakeutiZaring] p. 36. (Contributed by NM, 3-Apr-1994.) |
Ref | Expression |
---|---|
ordwe | ⊢ (Ord 𝐴 → E We 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ord 5885 | . 2 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴)) | |
2 | 1 | simprbi 483 | 1 ⊢ (Ord 𝐴 → E We 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Tr wtr 4902 E cep 5176 We wwe 5222 Ord word 5881 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-ord 5885 |
This theorem is referenced by: ordfr 5897 trssord 5899 tz7.5 5903 ordelord 5904 tz7.7 5908 epweon 7146 oieu 8607 oiid 8609 hartogslem1 8610 oemapso 8750 cantnf 8761 oemapwe 8762 dfac8b 9042 fin23lem27 9340 om2uzoi 12946 ltweuz 12952 wepwso 38113 onfrALTlem3 39259 onfrALTlem3VD 39620 |
Copyright terms: Public domain | W3C validator |