![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orduniss | Structured version Visualization version GIF version |
Description: An ordinal class includes its union. (Contributed by NM, 13-Sep-2003.) |
Ref | Expression |
---|---|
orduniss | ⊢ (Ord 𝐴 → ∪ 𝐴 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtr 5898 | . 2 ⊢ (Ord 𝐴 → Tr 𝐴) | |
2 | df-tr 4905 | . 2 ⊢ (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) | |
3 | 1, 2 | sylib 208 | 1 ⊢ (Ord 𝐴 → ∪ 𝐴 ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3715 ∪ cuni 4588 Tr wtr 4904 Ord word 5883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-tr 4905 df-ord 5887 |
This theorem is referenced by: orduniorsuc 7195 onfununi 7607 rankuniss 8902 r1limwun 9750 ontgval 32736 |
Copyright terms: Public domain | W3C validator |