MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtypelem5 Structured version   Visualization version   GIF version

Theorem ordtypelem5 8592
Description: Lemma for ordtype 8602. (Contributed by Mario Carneiro, 25-Jun-2015.)
Hypotheses
Ref Expression
ordtypelem.1 𝐹 = recs(𝐺)
ordtypelem.2 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
ordtypelem.3 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
ordtypelem.5 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
ordtypelem.6 𝑂 = OrdIso(𝑅, 𝐴)
ordtypelem.7 (𝜑𝑅 We 𝐴)
ordtypelem.8 (𝜑𝑅 Se 𝐴)
Assertion
Ref Expression
ordtypelem5 (𝜑 → (Ord dom 𝑂𝑂:dom 𝑂𝐴))
Distinct variable groups:   𝑣,𝑢,𝐶   ,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧,𝑅   𝐴,,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧   𝑡,𝑂,𝑢,𝑣,𝑥   𝜑,𝑡,𝑥   ,𝐹,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤,𝑣,𝑢,,𝑗)   𝐶(𝑥,𝑧,𝑤,𝑡,,𝑗)   𝑇(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝐺(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝑂(𝑧,𝑤,,𝑗)

Proof of Theorem ordtypelem5
StepHypRef Expression
1 ordtypelem.1 . . . . 5 𝐹 = recs(𝐺)
2 ordtypelem.2 . . . . 5 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
3 ordtypelem.3 . . . . 5 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
4 ordtypelem.5 . . . . 5 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
5 ordtypelem.6 . . . . 5 𝑂 = OrdIso(𝑅, 𝐴)
6 ordtypelem.7 . . . . 5 (𝜑𝑅 We 𝐴)
7 ordtypelem.8 . . . . 5 (𝜑𝑅 Se 𝐴)
81, 2, 3, 4, 5, 6, 7ordtypelem2 8589 . . . 4 (𝜑 → Ord 𝑇)
91tfr1a 7659 . . . . . 6 (Fun 𝐹 ∧ Lim dom 𝐹)
109simpri 481 . . . . 5 Lim dom 𝐹
11 limord 5945 . . . . 5 (Lim dom 𝐹 → Ord dom 𝐹)
1210, 11ax-mp 5 . . . 4 Ord dom 𝐹
13 ordin 5914 . . . 4 ((Ord 𝑇 ∧ Ord dom 𝐹) → Ord (𝑇 ∩ dom 𝐹))
148, 12, 13sylancl 697 . . 3 (𝜑 → Ord (𝑇 ∩ dom 𝐹))
151, 2, 3, 4, 5, 6, 7ordtypelem4 8591 . . . . 5 (𝜑𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴)
16 fdm 6212 . . . . 5 (𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴 → dom 𝑂 = (𝑇 ∩ dom 𝐹))
1715, 16syl 17 . . . 4 (𝜑 → dom 𝑂 = (𝑇 ∩ dom 𝐹))
18 ordeq 5891 . . . 4 (dom 𝑂 = (𝑇 ∩ dom 𝐹) → (Ord dom 𝑂 ↔ Ord (𝑇 ∩ dom 𝐹)))
1917, 18syl 17 . . 3 (𝜑 → (Ord dom 𝑂 ↔ Ord (𝑇 ∩ dom 𝐹)))
2014, 19mpbird 247 . 2 (𝜑 → Ord dom 𝑂)
2117feq2d 6192 . . 3 (𝜑 → (𝑂:dom 𝑂𝐴𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴))
2215, 21mpbird 247 . 2 (𝜑𝑂:dom 𝑂𝐴)
2320, 22jca 555 1 (𝜑 → (Ord dom 𝑂𝑂:dom 𝑂𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1632  wral 3050  wrex 3051  {crab 3054  Vcvv 3340  cin 3714   class class class wbr 4804  cmpt 4881   Se wse 5223   We wwe 5224  dom cdm 5266  ran crn 5267  cima 5269  Ord word 5883  Oncon0 5884  Lim wlim 5885  Fun wfun 6043  wf 6045  crio 6773  recscrecs 7636  OrdIsocoi 8579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-wrecs 7576  df-recs 7637  df-oi 8580
This theorem is referenced by:  oicl  8599  oif  8600
  Copyright terms: Public domain W3C validator