Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtypelem10 Structured version   Visualization version   GIF version

Theorem ordtypelem10 8429
 Description: Lemma for ordtype 8434. Using ax-rep 4769, exclude the possibility that 𝑂 is a proper class and does not enumerate all of 𝐴. (Contributed by Mario Carneiro, 25-Jun-2015.)
Hypotheses
Ref Expression
ordtypelem.1 𝐹 = recs(𝐺)
ordtypelem.2 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
ordtypelem.3 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
ordtypelem.5 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
ordtypelem.6 𝑂 = OrdIso(𝑅, 𝐴)
ordtypelem.7 (𝜑𝑅 We 𝐴)
ordtypelem.8 (𝜑𝑅 Se 𝐴)
Assertion
Ref Expression
ordtypelem10 (𝜑𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴))
Distinct variable groups:   𝑣,𝑢,𝐶   ,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧,𝑅   𝐴,,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧   𝑡,𝑂,𝑢,𝑣,𝑥   𝜑,𝑡,𝑥   ,𝐹,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤,𝑣,𝑢,,𝑗)   𝐶(𝑥,𝑧,𝑤,𝑡,,𝑗)   𝑇(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝐺(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝑂(𝑧,𝑤,,𝑗)

Proof of Theorem ordtypelem10
Dummy variables 𝑏 𝑐 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordtypelem.1 . . 3 𝐹 = recs(𝐺)
2 ordtypelem.2 . . 3 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
3 ordtypelem.3 . . 3 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
4 ordtypelem.5 . . 3 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
5 ordtypelem.6 . . 3 𝑂 = OrdIso(𝑅, 𝐴)
6 ordtypelem.7 . . 3 (𝜑𝑅 We 𝐴)
7 ordtypelem.8 . . 3 (𝜑𝑅 Se 𝐴)
81, 2, 3, 4, 5, 6, 7ordtypelem8 8427 . 2 (𝜑𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂))
91, 2, 3, 4, 5, 6, 7ordtypelem4 8423 . . . . 5 (𝜑𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴)
10 frn 6051 . . . . 5 (𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴 → ran 𝑂𝐴)
119, 10syl 17 . . . 4 (𝜑 → ran 𝑂𝐴)
12 simprl 794 . . . . . . . . 9 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑏𝐴)
136adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑅 We 𝐴)
147adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑅 Se 𝐴)
151, 2, 3, 4, 5, 13, 14ordtypelem8 8427 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂))
16 isof1o 6570 . . . . . . . . . . . . 13 (𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂) → 𝑂:dom 𝑂1-1-onto→ran 𝑂)
17 f1of 6135 . . . . . . . . . . . . 13 (𝑂:dom 𝑂1-1-onto→ran 𝑂𝑂:dom 𝑂⟶ran 𝑂)
1815, 16, 173syl 18 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑂:dom 𝑂⟶ran 𝑂)
19 f1of1 6134 . . . . . . . . . . . . . 14 (𝑂:dom 𝑂1-1-onto→ran 𝑂𝑂:dom 𝑂1-1→ran 𝑂)
2015, 16, 193syl 18 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑂:dom 𝑂1-1→ran 𝑂)
21 simpl 473 . . . . . . . . . . . . . . 15 ((𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂) → 𝑏𝐴)
22 seex 5075 . . . . . . . . . . . . . . 15 ((𝑅 Se 𝐴𝑏𝐴) → {𝑐𝐴𝑐𝑅𝑏} ∈ V)
237, 21, 22syl2an 494 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → {𝑐𝐴𝑐𝑅𝑏} ∈ V)
2411adantr 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → ran 𝑂𝐴)
25 rexnal 2994 . . . . . . . . . . . . . . . . . . 19 (∃𝑚 ∈ dom 𝑂 ¬ (𝑂𝑚)𝑅𝑏 ↔ ¬ ∀𝑚 ∈ dom 𝑂(𝑂𝑚)𝑅𝑏)
261, 2, 3, 4, 5, 6, 7ordtypelem7 8426 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑏𝐴) ∧ 𝑚 ∈ dom 𝑂) → ((𝑂𝑚)𝑅𝑏𝑏 ∈ ran 𝑂))
2726ord 392 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑏𝐴) ∧ 𝑚 ∈ dom 𝑂) → (¬ (𝑂𝑚)𝑅𝑏𝑏 ∈ ran 𝑂))
2827rexlimdva 3029 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑏𝐴) → (∃𝑚 ∈ dom 𝑂 ¬ (𝑂𝑚)𝑅𝑏𝑏 ∈ ran 𝑂))
2925, 28syl5bir 233 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑏𝐴) → (¬ ∀𝑚 ∈ dom 𝑂(𝑂𝑚)𝑅𝑏𝑏 ∈ ran 𝑂))
3029con1d 139 . . . . . . . . . . . . . . . . 17 ((𝜑𝑏𝐴) → (¬ 𝑏 ∈ ran 𝑂 → ∀𝑚 ∈ dom 𝑂(𝑂𝑚)𝑅𝑏))
3130impr 649 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → ∀𝑚 ∈ dom 𝑂(𝑂𝑚)𝑅𝑏)
32 ffun 6046 . . . . . . . . . . . . . . . . . . . 20 (𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴 → Fun 𝑂)
339, 32syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → Fun 𝑂)
34 funfn 5916 . . . . . . . . . . . . . . . . . . 19 (Fun 𝑂𝑂 Fn dom 𝑂)
3533, 34sylib 208 . . . . . . . . . . . . . . . . . 18 (𝜑𝑂 Fn dom 𝑂)
3635adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑂 Fn dom 𝑂)
37 breq1 4654 . . . . . . . . . . . . . . . . . 18 (𝑐 = (𝑂𝑚) → (𝑐𝑅𝑏 ↔ (𝑂𝑚)𝑅𝑏))
3837ralrn 6360 . . . . . . . . . . . . . . . . 17 (𝑂 Fn dom 𝑂 → (∀𝑐 ∈ ran 𝑂 𝑐𝑅𝑏 ↔ ∀𝑚 ∈ dom 𝑂(𝑂𝑚)𝑅𝑏))
3936, 38syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → (∀𝑐 ∈ ran 𝑂 𝑐𝑅𝑏 ↔ ∀𝑚 ∈ dom 𝑂(𝑂𝑚)𝑅𝑏))
4031, 39mpbird 247 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → ∀𝑐 ∈ ran 𝑂 𝑐𝑅𝑏)
41 ssrab 3678 . . . . . . . . . . . . . . 15 (ran 𝑂 ⊆ {𝑐𝐴𝑐𝑅𝑏} ↔ (ran 𝑂𝐴 ∧ ∀𝑐 ∈ ran 𝑂 𝑐𝑅𝑏))
4224, 40, 41sylanbrc 698 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → ran 𝑂 ⊆ {𝑐𝐴𝑐𝑅𝑏})
4323, 42ssexd 4803 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → ran 𝑂 ∈ V)
44 f1dmex 7133 . . . . . . . . . . . . 13 ((𝑂:dom 𝑂1-1→ran 𝑂 ∧ ran 𝑂 ∈ V) → dom 𝑂 ∈ V)
4520, 43, 44syl2anc 693 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → dom 𝑂 ∈ V)
46 fex 6487 . . . . . . . . . . . 12 ((𝑂:dom 𝑂⟶ran 𝑂 ∧ dom 𝑂 ∈ V) → 𝑂 ∈ V)
4718, 45, 46syl2anc 693 . . . . . . . . . . 11 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑂 ∈ V)
481, 2, 3, 4, 5, 13, 14, 47ordtypelem9 8428 . . . . . . . . . 10 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴))
49 isof1o 6570 . . . . . . . . . 10 (𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴) → 𝑂:dom 𝑂1-1-onto𝐴)
50 f1ofo 6142 . . . . . . . . . 10 (𝑂:dom 𝑂1-1-onto𝐴𝑂:dom 𝑂onto𝐴)
51 forn 6116 . . . . . . . . . 10 (𝑂:dom 𝑂onto𝐴 → ran 𝑂 = 𝐴)
5248, 49, 50, 514syl 19 . . . . . . . . 9 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → ran 𝑂 = 𝐴)
5312, 52eleqtrrd 2703 . . . . . . . 8 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑏 ∈ ran 𝑂)
5453expr 643 . . . . . . 7 ((𝜑𝑏𝐴) → (¬ 𝑏 ∈ ran 𝑂𝑏 ∈ ran 𝑂))
5554pm2.18d 124 . . . . . 6 ((𝜑𝑏𝐴) → 𝑏 ∈ ran 𝑂)
5655ex 450 . . . . 5 (𝜑 → (𝑏𝐴𝑏 ∈ ran 𝑂))
5756ssrdv 3607 . . . 4 (𝜑𝐴 ⊆ ran 𝑂)
5811, 57eqssd 3618 . . 3 (𝜑 → ran 𝑂 = 𝐴)
59 isoeq5 6568 . . 3 (ran 𝑂 = 𝐴 → (𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂) ↔ 𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴)))
6058, 59syl 17 . 2 (𝜑 → (𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂) ↔ 𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴)))
618, 60mpbid 222 1 (𝜑𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 384   = wceq 1482   ∈ wcel 1989  ∀wral 2911  ∃wrex 2912  {crab 2915  Vcvv 3198   ∩ cin 3571   ⊆ wss 3572   class class class wbr 4651   ↦ cmpt 4727   E cep 5026   Se wse 5069   We wwe 5070  dom cdm 5112  ran crn 5113   “ cima 5115  Oncon0 5721  Fun wfun 5880   Fn wfn 5881  ⟶wf 5882  –1-1→wf1 5883  –onto→wfo 5884  –1-1-onto→wf1o 5885  ‘cfv 5886   Isom wiso 5887  ℩crio 6607  recscrecs 7464  OrdIsocoi 8411 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-ral 2916  df-rex 2917  df-reu 2918  df-rmo 2919  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-pss 3588  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-tp 4180  df-op 4182  df-uni 4435  df-iun 4520  df-br 4652  df-opab 4711  df-mpt 4728  df-tr 4751  df-id 5022  df-eprel 5027  df-po 5033  df-so 5034  df-fr 5071  df-se 5072  df-we 5073  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-pred 5678  df-ord 5724  df-on 5725  df-lim 5726  df-suc 5727  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-isom 5895  df-riota 6608  df-wrecs 7404  df-recs 7465  df-oi 8412 This theorem is referenced by:  ordtype  8434
 Copyright terms: Public domain W3C validator