Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtri4 Structured version   Visualization version   GIF version

Theorem ordtri4 5914
 Description: A trichotomy law for ordinals. (Contributed by NM, 1-Nov-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
ordtri4 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 = 𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴𝐵)))

Proof of Theorem ordtri4
StepHypRef Expression
1 eqss 3751 . 2 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
2 ordtri1 5909 . . . 4 ((Ord 𝐵 ∧ Ord 𝐴) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
32ancoms 468 . . 3 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
43anbi2d 742 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐴𝐵𝐵𝐴) ↔ (𝐴𝐵 ∧ ¬ 𝐴𝐵)))
51, 4syl5bb 272 1 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 = 𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴𝐵)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1624   ∈ wcel 2131   ⊆ wss 3707  Ord word 5875 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-sep 4925  ax-nul 4933  ax-pr 5047 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-ral 3047  df-rex 3048  df-rab 3051  df-v 3334  df-sbc 3569  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-sn 4314  df-pr 4316  df-op 4320  df-uni 4581  df-br 4797  df-opab 4857  df-tr 4897  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-ord 5879 This theorem is referenced by:  carduni  8989  alephfp  9113
 Copyright terms: Public domain W3C validator