![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordtrestixx | Structured version Visualization version GIF version |
Description: The restriction of the less than order to an interval gives the same topology as the subspace topology. (Contributed by Mario Carneiro, 9-Sep-2015.) |
Ref | Expression |
---|---|
ordtrestixx.1 | ⊢ 𝐴 ⊆ ℝ* |
ordtrestixx.2 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥[,]𝑦) ⊆ 𝐴) |
Ref | Expression |
---|---|
ordtrestixx | ⊢ ((ordTop‘ ≤ ) ↾t 𝐴) = (ordTop‘( ≤ ∩ (𝐴 × 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ledm 17271 | . . . 4 ⊢ ℝ* = dom ≤ | |
2 | letsr 17274 | . . . . 5 ⊢ ≤ ∈ TosetRel | |
3 | 2 | a1i 11 | . . . 4 ⊢ (⊤ → ≤ ∈ TosetRel ) |
4 | ordtrestixx.1 | . . . . 5 ⊢ 𝐴 ⊆ ℝ* | |
5 | 4 | a1i 11 | . . . 4 ⊢ (⊤ → 𝐴 ⊆ ℝ*) |
6 | 4 | sseli 3632 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℝ*) |
7 | 4 | sseli 3632 | . . . . . . 7 ⊢ (𝑦 ∈ 𝐴 → 𝑦 ∈ ℝ*) |
8 | iccval 12252 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥[,]𝑦) = {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) | |
9 | 6, 7, 8 | syl2an 493 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥[,]𝑦) = {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
10 | ordtrestixx.2 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥[,]𝑦) ⊆ 𝐴) | |
11 | 9, 10 | eqsstr3d 3673 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)} ⊆ 𝐴) |
12 | 11 | adantl 481 | . . . 4 ⊢ ((⊤ ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)} ⊆ 𝐴) |
13 | 1, 3, 5, 12 | ordtrest2 21056 | . . 3 ⊢ (⊤ → (ordTop‘( ≤ ∩ (𝐴 × 𝐴))) = ((ordTop‘ ≤ ) ↾t 𝐴)) |
14 | 13 | eqcomd 2657 | . 2 ⊢ (⊤ → ((ordTop‘ ≤ ) ↾t 𝐴) = (ordTop‘( ≤ ∩ (𝐴 × 𝐴)))) |
15 | 14 | trud 1533 | 1 ⊢ ((ordTop‘ ≤ ) ↾t 𝐴) = (ordTop‘( ≤ ∩ (𝐴 × 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ⊤wtru 1524 ∈ wcel 2030 {crab 2945 ∩ cin 3606 ⊆ wss 3607 class class class wbr 4685 × cxp 5141 ‘cfv 5926 (class class class)co 6690 ℝ*cxr 10111 ≤ cle 10113 [,]cicc 12216 ↾t crest 16128 ordTopcordt 16206 TosetRel ctsr 17246 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-pre-lttri 10048 ax-pre-lttrn 10049 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-iin 4555 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-fi 8358 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-icc 12220 df-rest 16130 df-topgen 16151 df-ordt 16208 df-ps 17247 df-tsr 17248 df-top 20747 df-topon 20764 df-bases 20798 |
This theorem is referenced by: ordtresticc 21075 icopnfhmeo 22789 |
Copyright terms: Public domain | W3C validator |