![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordtr3OLD | Structured version Visualization version GIF version |
Description: Obsolete proof of ordtr3 5882 as of 24-Sep-2021. (Contributed by Mario Carneiro, 30-Dec-2014.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
ordtr3OLD | ⊢ ((Ord 𝐵 ∧ Ord 𝐶) → (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 479 | . . . . 5 ⊢ ((Ord 𝐵 ∧ Ord 𝐶) → Ord 𝐶) | |
2 | ordelord 5858 | . . . . . 6 ⊢ ((Ord 𝐵 ∧ 𝐴 ∈ 𝐵) → Ord 𝐴) | |
3 | 2 | adantlr 753 | . . . . 5 ⊢ (((Ord 𝐵 ∧ Ord 𝐶) ∧ 𝐴 ∈ 𝐵) → Ord 𝐴) |
4 | ordtri1 5869 | . . . . 5 ⊢ ((Ord 𝐶 ∧ Ord 𝐴) → (𝐶 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ 𝐶)) | |
5 | 1, 3, 4 | syl2an2r 911 | . . . 4 ⊢ (((Ord 𝐵 ∧ Ord 𝐶) ∧ 𝐴 ∈ 𝐵) → (𝐶 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ 𝐶)) |
6 | ordtr2 5881 | . . . . . . 7 ⊢ ((Ord 𝐶 ∧ Ord 𝐵) → ((𝐶 ⊆ 𝐴 ∧ 𝐴 ∈ 𝐵) → 𝐶 ∈ 𝐵)) | |
7 | 6 | ancoms 468 | . . . . . 6 ⊢ ((Ord 𝐵 ∧ Ord 𝐶) → ((𝐶 ⊆ 𝐴 ∧ 𝐴 ∈ 𝐵) → 𝐶 ∈ 𝐵)) |
8 | 7 | expcomd 453 | . . . . 5 ⊢ ((Ord 𝐵 ∧ Ord 𝐶) → (𝐴 ∈ 𝐵 → (𝐶 ⊆ 𝐴 → 𝐶 ∈ 𝐵))) |
9 | 8 | imp 444 | . . . 4 ⊢ (((Ord 𝐵 ∧ Ord 𝐶) ∧ 𝐴 ∈ 𝐵) → (𝐶 ⊆ 𝐴 → 𝐶 ∈ 𝐵)) |
10 | 5, 9 | sylbird 250 | . . 3 ⊢ (((Ord 𝐵 ∧ Ord 𝐶) ∧ 𝐴 ∈ 𝐵) → (¬ 𝐴 ∈ 𝐶 → 𝐶 ∈ 𝐵)) |
11 | 10 | orrd 392 | . 2 ⊢ (((Ord 𝐵 ∧ Ord 𝐶) ∧ 𝐴 ∈ 𝐵) → (𝐴 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵)) |
12 | 11 | ex 449 | 1 ⊢ ((Ord 𝐵 ∧ Ord 𝐶) → (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∨ wo 382 ∧ wa 383 ∈ wcel 2103 ⊆ wss 3680 Ord word 5835 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 ax-nul 4897 ax-pr 5011 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-ral 3019 df-rex 3020 df-rab 3023 df-v 3306 df-sbc 3542 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-pss 3696 df-nul 4024 df-if 4195 df-sn 4286 df-pr 4288 df-op 4292 df-uni 4545 df-br 4761 df-opab 4821 df-tr 4861 df-eprel 5133 df-po 5139 df-so 5140 df-fr 5177 df-we 5179 df-ord 5839 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |