![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordtr2 | Structured version Visualization version GIF version |
Description: Transitive law for ordinal classes. (Contributed by NM, 12-Dec-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
ordtr2 | ⊢ ((Ord 𝐴 ∧ Ord 𝐶) → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordelord 5906 | . . . . . . . 8 ⊢ ((Ord 𝐶 ∧ 𝐵 ∈ 𝐶) → Ord 𝐵) | |
2 | 1 | ex 449 | . . . . . . 7 ⊢ (Ord 𝐶 → (𝐵 ∈ 𝐶 → Ord 𝐵)) |
3 | 2 | ancld 577 | . . . . . 6 ⊢ (Ord 𝐶 → (𝐵 ∈ 𝐶 → (𝐵 ∈ 𝐶 ∧ Ord 𝐵))) |
4 | 3 | anc2li 581 | . . . . 5 ⊢ (Ord 𝐶 → (𝐵 ∈ 𝐶 → (Ord 𝐶 ∧ (𝐵 ∈ 𝐶 ∧ Ord 𝐵)))) |
5 | ordelpss 5912 | . . . . . . . . . 10 ⊢ ((Ord 𝐵 ∧ Ord 𝐶) → (𝐵 ∈ 𝐶 ↔ 𝐵 ⊊ 𝐶)) | |
6 | sspsstr 3854 | . . . . . . . . . . 11 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊊ 𝐶) → 𝐴 ⊊ 𝐶) | |
7 | 6 | expcom 450 | . . . . . . . . . 10 ⊢ (𝐵 ⊊ 𝐶 → (𝐴 ⊆ 𝐵 → 𝐴 ⊊ 𝐶)) |
8 | 5, 7 | syl6bi 243 | . . . . . . . . 9 ⊢ ((Ord 𝐵 ∧ Ord 𝐶) → (𝐵 ∈ 𝐶 → (𝐴 ⊆ 𝐵 → 𝐴 ⊊ 𝐶))) |
9 | 8 | expcom 450 | . . . . . . . 8 ⊢ (Ord 𝐶 → (Ord 𝐵 → (𝐵 ∈ 𝐶 → (𝐴 ⊆ 𝐵 → 𝐴 ⊊ 𝐶)))) |
10 | 9 | com23 86 | . . . . . . 7 ⊢ (Ord 𝐶 → (𝐵 ∈ 𝐶 → (Ord 𝐵 → (𝐴 ⊆ 𝐵 → 𝐴 ⊊ 𝐶)))) |
11 | 10 | imp32 448 | . . . . . 6 ⊢ ((Ord 𝐶 ∧ (𝐵 ∈ 𝐶 ∧ Ord 𝐵)) → (𝐴 ⊆ 𝐵 → 𝐴 ⊊ 𝐶)) |
12 | 11 | com12 32 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → ((Ord 𝐶 ∧ (𝐵 ∈ 𝐶 ∧ Ord 𝐵)) → 𝐴 ⊊ 𝐶)) |
13 | 4, 12 | syl9 77 | . . . 4 ⊢ (Ord 𝐶 → (𝐴 ⊆ 𝐵 → (𝐵 ∈ 𝐶 → 𝐴 ⊊ 𝐶))) |
14 | 13 | impd 446 | . . 3 ⊢ (Ord 𝐶 → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ⊊ 𝐶)) |
15 | 14 | adantl 473 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐶) → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ⊊ 𝐶)) |
16 | ordelpss 5912 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐶) → (𝐴 ∈ 𝐶 ↔ 𝐴 ⊊ 𝐶)) | |
17 | 15, 16 | sylibrd 249 | 1 ⊢ ((Ord 𝐴 ∧ Ord 𝐶) → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 2139 ⊆ wss 3715 ⊊ wpss 3716 Ord word 5883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-tr 4905 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-ord 5887 |
This theorem is referenced by: ordtr3OLD 5931 ontr2 5933 ordelinel 5986 ordelinelOLD 5987 smogt 7634 smorndom 7635 nnarcl 7867 nnawordex 7888 coftr 9307 noetalem3 32192 hfuni 32618 |
Copyright terms: Public domain | W3C validator |