![]() |
Mathbox for Chen-Pang He |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ordtopconn | Structured version Visualization version GIF version |
Description: An ordinal topology is connected. (Contributed by Chen-Pang He, 1-Nov-2015.) |
Ref | Expression |
---|---|
ordtopconn | ⊢ (Ord 𝐽 → (𝐽 ∈ Top ↔ 𝐽 ∈ Conn)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtop 32766 | . . 3 ⊢ (Ord 𝐽 → (𝐽 ∈ Top ↔ 𝐽 ≠ ∪ 𝐽)) | |
2 | onsucconn 32768 | . . . 4 ⊢ (∪ 𝐽 ∈ On → suc ∪ 𝐽 ∈ Conn) | |
3 | 2 | ordtoplem 32765 | . . 3 ⊢ (Ord 𝐽 → (𝐽 ≠ ∪ 𝐽 → 𝐽 ∈ Conn)) |
4 | 1, 3 | sylbid 230 | . 2 ⊢ (Ord 𝐽 → (𝐽 ∈ Top → 𝐽 ∈ Conn)) |
5 | conntop 21440 | . 2 ⊢ (𝐽 ∈ Conn → 𝐽 ∈ Top) | |
6 | 4, 5 | impbid1 215 | 1 ⊢ (Ord 𝐽 → (𝐽 ∈ Top ↔ 𝐽 ∈ Conn)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∈ wcel 2144 ≠ wne 2942 ∪ cuni 4572 Ord word 5865 Topctop 20917 Conncconn 21434 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-sbc 3586 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-ord 5869 df-on 5870 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-fv 6039 df-topgen 16311 df-top 20918 df-bases 20970 df-cld 21043 df-conn 21435 |
This theorem is referenced by: onintopssconn 32770 |
Copyright terms: Public domain | W3C validator |