Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordthaus Structured version   Visualization version   GIF version

Theorem ordthaus 21361
 Description: The order topology of a total order is Hausdorff. (Contributed by Mario Carneiro, 13-Sep-2015.)
Assertion
Ref Expression
ordthaus (𝑅 ∈ TosetRel → (ordTop‘𝑅) ∈ Haus)

Proof of Theorem ordthaus
Dummy variables 𝑚 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2748 . . . . . 6 dom 𝑅 = dom 𝑅
21ordthauslem 21360 . . . . 5 ((𝑅 ∈ TosetRel ∧ 𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅) → (𝑥𝑅𝑦 → (𝑥𝑦 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))))
31ordthauslem 21360 . . . . . . 7 ((𝑅 ∈ TosetRel ∧ 𝑦 ∈ dom 𝑅𝑥 ∈ dom 𝑅) → (𝑦𝑅𝑥 → (𝑦𝑥 → ∃𝑛 ∈ (ordTop‘𝑅)∃𝑚 ∈ (ordTop‘𝑅)(𝑦𝑛𝑥𝑚 ∧ (𝑛𝑚) = ∅))))
4 necom 2973 . . . . . . . 8 (𝑦𝑥𝑥𝑦)
5 3ancoma 1084 . . . . . . . . . . 11 ((𝑦𝑛𝑥𝑚 ∧ (𝑛𝑚) = ∅) ↔ (𝑥𝑚𝑦𝑛 ∧ (𝑛𝑚) = ∅))
6 incom 3936 . . . . . . . . . . . . 13 (𝑛𝑚) = (𝑚𝑛)
76eqeq1i 2753 . . . . . . . . . . . 12 ((𝑛𝑚) = ∅ ↔ (𝑚𝑛) = ∅)
873anbi3i 1416 . . . . . . . . . . 11 ((𝑥𝑚𝑦𝑛 ∧ (𝑛𝑚) = ∅) ↔ (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))
95, 8bitri 264 . . . . . . . . . 10 ((𝑦𝑛𝑥𝑚 ∧ (𝑛𝑚) = ∅) ↔ (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))
1092rexbii 3168 . . . . . . . . 9 (∃𝑛 ∈ (ordTop‘𝑅)∃𝑚 ∈ (ordTop‘𝑅)(𝑦𝑛𝑥𝑚 ∧ (𝑛𝑚) = ∅) ↔ ∃𝑛 ∈ (ordTop‘𝑅)∃𝑚 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))
11 rexcom 3225 . . . . . . . . 9 (∃𝑛 ∈ (ordTop‘𝑅)∃𝑚 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅) ↔ ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))
1210, 11bitri 264 . . . . . . . 8 (∃𝑛 ∈ (ordTop‘𝑅)∃𝑚 ∈ (ordTop‘𝑅)(𝑦𝑛𝑥𝑚 ∧ (𝑛𝑚) = ∅) ↔ ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))
134, 12imbi12i 339 . . . . . . 7 ((𝑦𝑥 → ∃𝑛 ∈ (ordTop‘𝑅)∃𝑚 ∈ (ordTop‘𝑅)(𝑦𝑛𝑥𝑚 ∧ (𝑛𝑚) = ∅)) ↔ (𝑥𝑦 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅)))
143, 13syl6ib 241 . . . . . 6 ((𝑅 ∈ TosetRel ∧ 𝑦 ∈ dom 𝑅𝑥 ∈ dom 𝑅) → (𝑦𝑅𝑥 → (𝑥𝑦 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))))
15143com23 1120 . . . . 5 ((𝑅 ∈ TosetRel ∧ 𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅) → (𝑦𝑅𝑥 → (𝑥𝑦 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))))
161tsrlin 17391 . . . . 5 ((𝑅 ∈ TosetRel ∧ 𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅) → (𝑥𝑅𝑦𝑦𝑅𝑥))
172, 15, 16mpjaod 395 . . . 4 ((𝑅 ∈ TosetRel ∧ 𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅) → (𝑥𝑦 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅)))
18173expb 1113 . . 3 ((𝑅 ∈ TosetRel ∧ (𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅)) → (𝑥𝑦 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅)))
1918ralrimivva 3097 . 2 (𝑅 ∈ TosetRel → ∀𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅(𝑥𝑦 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅)))
201ordttopon 21170 . . 3 (𝑅 ∈ TosetRel → (ordTop‘𝑅) ∈ (TopOn‘dom 𝑅))
21 ishaus2 21328 . . 3 ((ordTop‘𝑅) ∈ (TopOn‘dom 𝑅) → ((ordTop‘𝑅) ∈ Haus ↔ ∀𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅(𝑥𝑦 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))))
2220, 21syl 17 . 2 (𝑅 ∈ TosetRel → ((ordTop‘𝑅) ∈ Haus ↔ ∀𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅(𝑥𝑦 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))))
2319, 22mpbird 247 1 (𝑅 ∈ TosetRel → (ordTop‘𝑅) ∈ Haus)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ w3a 1072   = wceq 1620   ∈ wcel 2127   ≠ wne 2920  ∀wral 3038  ∃wrex 3039   ∩ cin 3702  ∅c0 4046   class class class wbr 4792  dom cdm 5254  ‘cfv 6037  ordTopcordt 16332   TosetRel ctsr 17371  TopOnctopon 20888  Hauscha 21285 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-ral 3043  df-rex 3044  df-reu 3045  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-int 4616  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-om 7219  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7899  df-en 8110  df-fin 8113  df-fi 8470  df-topgen 16277  df-ordt 16334  df-ps 17372  df-tsr 17373  df-top 20872  df-topon 20889  df-bases 20923  df-haus 21292 This theorem is referenced by:  xrge0tsms  22809  xrhaus  29815  xrge0tsmsd  30065
 Copyright terms: Public domain W3C validator