Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ordtconnlem1 Structured version   Visualization version   GIF version

Theorem ordtconnlem1 30300
Description: Connectedness in the order topology of a toset. This is the "easy" direction of ordtconn 30301. See also reconnlem1 22850. (Contributed by Thierry Arnoux, 14-Sep-2018.)
Hypotheses
Ref Expression
ordtconn.x 𝐵 = (Base‘𝐾)
ordtconn.l = ((le‘𝐾) ∩ (𝐵 × 𝐵))
ordtconn.j 𝐽 = (ordTop‘ )
Assertion
Ref Expression
ordtconnlem1 ((𝐾 ∈ Toset ∧ 𝐴𝐵) → ((𝐽t 𝐴) ∈ Conn → ∀𝑥𝐴𝑦𝐴𝑟𝐵 ((𝑥 𝑟𝑟 𝑦) → 𝑟𝐴)))
Distinct variable groups:   𝑥,𝑟,𝑦,𝐴   𝐵,𝑟,𝑥,𝑦   𝐽,𝑟   𝐾,𝑟,𝑥,𝑦   𝑥, ,𝑦
Allowed substitution hints:   𝐽(𝑥,𝑦)   (𝑟)

Proof of Theorem ordtconnlem1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfv 1992 . . . . 5 𝑟(𝐾 ∈ Toset ∧ 𝐴𝐵)
2 nfcv 2902 . . . . . . 7 𝑟𝐴
3 nfra2 3084 . . . . . . 7 𝑟𝑦𝐴𝑟𝐵 ((𝑥 𝑟𝑟 𝑦) → 𝑟𝐴)
42, 3nfral 3083 . . . . . 6 𝑟𝑥𝐴𝑦𝐴𝑟𝐵 ((𝑥 𝑟𝑟 𝑦) → 𝑟𝐴)
54nfn 1933 . . . . 5 𝑟 ¬ ∀𝑥𝐴𝑦𝐴𝑟𝐵 ((𝑥 𝑟𝑟 𝑦) → 𝑟𝐴)
61, 5nfan 1977 . . . 4 𝑟((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ ¬ ∀𝑥𝐴𝑦𝐴𝑟𝐵 ((𝑥 𝑟𝑟 𝑦) → 𝑟𝐴))
7 tospos 29988 . . . . . . . . . 10 (𝐾 ∈ Toset → 𝐾 ∈ Poset)
8 posprs 17170 . . . . . . . . . 10 (𝐾 ∈ Poset → 𝐾 ∈ Preset )
9 ordtconn.j . . . . . . . . . . 11 𝐽 = (ordTop‘ )
10 ordtconn.l . . . . . . . . . . . . . 14 = ((le‘𝐾) ∩ (𝐵 × 𝐵))
11 fvex 6363 . . . . . . . . . . . . . . 15 (le‘𝐾) ∈ V
1211inex1 4951 . . . . . . . . . . . . . 14 ((le‘𝐾) ∩ (𝐵 × 𝐵)) ∈ V
1310, 12eqeltri 2835 . . . . . . . . . . . . 13 ∈ V
14 eqid 2760 . . . . . . . . . . . . . 14 dom = dom
1514ordttopon 21219 . . . . . . . . . . . . 13 ( ∈ V → (ordTop‘ ) ∈ (TopOn‘dom ))
1613, 15ax-mp 5 . . . . . . . . . . . 12 (ordTop‘ ) ∈ (TopOn‘dom )
17 ordtconn.x . . . . . . . . . . . . . 14 𝐵 = (Base‘𝐾)
1817, 10prsdm 30290 . . . . . . . . . . . . 13 (𝐾 ∈ Preset → dom = 𝐵)
1918fveq2d 6357 . . . . . . . . . . . 12 (𝐾 ∈ Preset → (TopOn‘dom ) = (TopOn‘𝐵))
2016, 19syl5eleq 2845 . . . . . . . . . . 11 (𝐾 ∈ Preset → (ordTop‘ ) ∈ (TopOn‘𝐵))
219, 20syl5eqel 2843 . . . . . . . . . 10 (𝐾 ∈ Preset → 𝐽 ∈ (TopOn‘𝐵))
227, 8, 213syl 18 . . . . . . . . 9 (𝐾 ∈ Toset → 𝐽 ∈ (TopOn‘𝐵))
2322ad3antrrr 768 . . . . . . . 8 ((((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) ∧ ¬ 𝑟𝐴) → 𝐽 ∈ (TopOn‘𝐵))
2423adantlr 753 . . . . . . 7 (((((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) ∧ (∃𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃𝑦𝐴 ¬ 𝑦 𝑟)) ∧ ¬ 𝑟𝐴) → 𝐽 ∈ (TopOn‘𝐵))
25 simpllr 817 . . . . . . . 8 ((((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) ∧ ¬ 𝑟𝐴) → 𝐴𝐵)
2625adantlr 753 . . . . . . 7 (((((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) ∧ (∃𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃𝑦𝐴 ¬ 𝑦 𝑟)) ∧ ¬ 𝑟𝐴) → 𝐴𝐵)
27 simpll 807 . . . . . . . . . . . 12 (((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) → 𝐾 ∈ Toset)
2827, 7, 83syl 18 . . . . . . . . . . 11 (((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) → 𝐾 ∈ Preset )
29 snex 5057 . . . . . . . . . . . . . . . 16 {𝐵} ∈ V
30 fvex 6363 . . . . . . . . . . . . . . . . . . . 20 (Base‘𝐾) ∈ V
3117, 30eqeltri 2835 . . . . . . . . . . . . . . . . . . 19 𝐵 ∈ V
3231mptex 6651 . . . . . . . . . . . . . . . . . 18 (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∈ V
3332rnex 7266 . . . . . . . . . . . . . . . . 17 ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∈ V
3431mptex 6651 . . . . . . . . . . . . . . . . . 18 (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}) ∈ V
3534rnex 7266 . . . . . . . . . . . . . . . . 17 ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}) ∈ V
3633, 35unex 7122 . . . . . . . . . . . . . . . 16 (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦})) ∈ V
3729, 36unex 7122 . . . . . . . . . . . . . . 15 ({𝐵} ∪ (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))) ∈ V
38 ssfii 8492 . . . . . . . . . . . . . . 15 (({𝐵} ∪ (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))) ∈ V → ({𝐵} ∪ (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))) ⊆ (fi‘({𝐵} ∪ (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦})))))
3937, 38ax-mp 5 . . . . . . . . . . . . . 14 ({𝐵} ∪ (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))) ⊆ (fi‘({𝐵} ∪ (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))))
40 fvex 6363 . . . . . . . . . . . . . . 15 (fi‘({𝐵} ∪ (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦})))) ∈ V
41 bastg 20992 . . . . . . . . . . . . . . 15 ((fi‘({𝐵} ∪ (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦})))) ∈ V → (fi‘({𝐵} ∪ (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦})))) ⊆ (topGen‘(fi‘({𝐵} ∪ (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))))))
4240, 41ax-mp 5 . . . . . . . . . . . . . 14 (fi‘({𝐵} ∪ (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦})))) ⊆ (topGen‘(fi‘({𝐵} ∪ (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦})))))
4339, 42sstri 3753 . . . . . . . . . . . . 13 ({𝐵} ∪ (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))) ⊆ (topGen‘(fi‘({𝐵} ∪ (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦})))))
44 eqid 2760 . . . . . . . . . . . . . . 15 ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) = ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥})
45 eqid 2760 . . . . . . . . . . . . . . 15 ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}) = ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦})
4617, 10, 44, 45ordtprsval 30294 . . . . . . . . . . . . . 14 (𝐾 ∈ Preset → (ordTop‘ ) = (topGen‘(fi‘({𝐵} ∪ (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))))))
479, 46syl5eq 2806 . . . . . . . . . . . . 13 (𝐾 ∈ Preset → 𝐽 = (topGen‘(fi‘({𝐵} ∪ (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))))))
4843, 47syl5sseqr 3795 . . . . . . . . . . . 12 (𝐾 ∈ Preset → ({𝐵} ∪ (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))) ⊆ 𝐽)
4948unssbd 3934 . . . . . . . . . . 11 (𝐾 ∈ Preset → (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦})) ⊆ 𝐽)
5028, 49syl 17 . . . . . . . . . 10 (((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) → (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦})) ⊆ 𝐽)
5150unssbd 3934 . . . . . . . . 9 (((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) → ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}) ⊆ 𝐽)
52 breq2 4808 . . . . . . . . . . . . . 14 (𝑧 = 𝑦 → (𝑟 𝑧𝑟 𝑦))
5352notbid 307 . . . . . . . . . . . . 13 (𝑧 = 𝑦 → (¬ 𝑟 𝑧 ↔ ¬ 𝑟 𝑦))
5453cbvrabv 3339 . . . . . . . . . . . 12 {𝑧𝐵 ∣ ¬ 𝑟 𝑧} = {𝑦𝐵 ∣ ¬ 𝑟 𝑦}
55 breq1 4807 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑟 → (𝑥 𝑦𝑟 𝑦))
5655notbid 307 . . . . . . . . . . . . . . 15 (𝑥 = 𝑟 → (¬ 𝑥 𝑦 ↔ ¬ 𝑟 𝑦))
5756rabbidv 3329 . . . . . . . . . . . . . 14 (𝑥 = 𝑟 → {𝑦𝐵 ∣ ¬ 𝑥 𝑦} = {𝑦𝐵 ∣ ¬ 𝑟 𝑦})
5857eqeq2d 2770 . . . . . . . . . . . . 13 (𝑥 = 𝑟 → ({𝑧𝐵 ∣ ¬ 𝑟 𝑧} = {𝑦𝐵 ∣ ¬ 𝑥 𝑦} ↔ {𝑧𝐵 ∣ ¬ 𝑟 𝑧} = {𝑦𝐵 ∣ ¬ 𝑟 𝑦}))
5958rspcev 3449 . . . . . . . . . . . 12 ((𝑟𝐵 ∧ {𝑧𝐵 ∣ ¬ 𝑟 𝑧} = {𝑦𝐵 ∣ ¬ 𝑟 𝑦}) → ∃𝑥𝐵 {𝑧𝐵 ∣ ¬ 𝑟 𝑧} = {𝑦𝐵 ∣ ¬ 𝑥 𝑦})
6054, 59mpan2 709 . . . . . . . . . . 11 (𝑟𝐵 → ∃𝑥𝐵 {𝑧𝐵 ∣ ¬ 𝑟 𝑧} = {𝑦𝐵 ∣ ¬ 𝑥 𝑦})
6131rabex 4964 . . . . . . . . . . . 12 {𝑧𝐵 ∣ ¬ 𝑟 𝑧} ∈ V
62 eqid 2760 . . . . . . . . . . . . 13 (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}) = (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦})
6362elrnmpt 5527 . . . . . . . . . . . 12 ({𝑧𝐵 ∣ ¬ 𝑟 𝑧} ∈ V → ({𝑧𝐵 ∣ ¬ 𝑟 𝑧} ∈ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}) ↔ ∃𝑥𝐵 {𝑧𝐵 ∣ ¬ 𝑟 𝑧} = {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))
6461, 63ax-mp 5 . . . . . . . . . . 11 ({𝑧𝐵 ∣ ¬ 𝑟 𝑧} ∈ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}) ↔ ∃𝑥𝐵 {𝑧𝐵 ∣ ¬ 𝑟 𝑧} = {𝑦𝐵 ∣ ¬ 𝑥 𝑦})
6560, 64sylibr 224 . . . . . . . . . 10 (𝑟𝐵 → {𝑧𝐵 ∣ ¬ 𝑟 𝑧} ∈ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))
6665adantl 473 . . . . . . . . 9 (((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) → {𝑧𝐵 ∣ ¬ 𝑟 𝑧} ∈ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))
6751, 66sseldd 3745 . . . . . . . 8 (((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) → {𝑧𝐵 ∣ ¬ 𝑟 𝑧} ∈ 𝐽)
6867ad2antrr 764 . . . . . . 7 (((((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) ∧ (∃𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃𝑦𝐴 ¬ 𝑦 𝑟)) ∧ ¬ 𝑟𝐴) → {𝑧𝐵 ∣ ¬ 𝑟 𝑧} ∈ 𝐽)
6950unssad 3933 . . . . . . . . 9 (((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) → ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ⊆ 𝐽)
70 breq1 4807 . . . . . . . . . . . . . 14 (𝑧 = 𝑦 → (𝑧 𝑟𝑦 𝑟))
7170notbid 307 . . . . . . . . . . . . 13 (𝑧 = 𝑦 → (¬ 𝑧 𝑟 ↔ ¬ 𝑦 𝑟))
7271cbvrabv 3339 . . . . . . . . . . . 12 {𝑧𝐵 ∣ ¬ 𝑧 𝑟} = {𝑦𝐵 ∣ ¬ 𝑦 𝑟}
73 breq2 4808 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑟 → (𝑦 𝑥𝑦 𝑟))
7473notbid 307 . . . . . . . . . . . . . . 15 (𝑥 = 𝑟 → (¬ 𝑦 𝑥 ↔ ¬ 𝑦 𝑟))
7574rabbidv 3329 . . . . . . . . . . . . . 14 (𝑥 = 𝑟 → {𝑦𝐵 ∣ ¬ 𝑦 𝑥} = {𝑦𝐵 ∣ ¬ 𝑦 𝑟})
7675eqeq2d 2770 . . . . . . . . . . . . 13 (𝑥 = 𝑟 → ({𝑧𝐵 ∣ ¬ 𝑧 𝑟} = {𝑦𝐵 ∣ ¬ 𝑦 𝑥} ↔ {𝑧𝐵 ∣ ¬ 𝑧 𝑟} = {𝑦𝐵 ∣ ¬ 𝑦 𝑟}))
7776rspcev 3449 . . . . . . . . . . . 12 ((𝑟𝐵 ∧ {𝑧𝐵 ∣ ¬ 𝑧 𝑟} = {𝑦𝐵 ∣ ¬ 𝑦 𝑟}) → ∃𝑥𝐵 {𝑧𝐵 ∣ ¬ 𝑧 𝑟} = {𝑦𝐵 ∣ ¬ 𝑦 𝑥})
7872, 77mpan2 709 . . . . . . . . . . 11 (𝑟𝐵 → ∃𝑥𝐵 {𝑧𝐵 ∣ ¬ 𝑧 𝑟} = {𝑦𝐵 ∣ ¬ 𝑦 𝑥})
7931rabex 4964 . . . . . . . . . . . 12 {𝑧𝐵 ∣ ¬ 𝑧 𝑟} ∈ V
80 eqid 2760 . . . . . . . . . . . . 13 (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) = (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥})
8180elrnmpt 5527 . . . . . . . . . . . 12 ({𝑧𝐵 ∣ ¬ 𝑧 𝑟} ∈ V → ({𝑧𝐵 ∣ ¬ 𝑧 𝑟} ∈ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ↔ ∃𝑥𝐵 {𝑧𝐵 ∣ ¬ 𝑧 𝑟} = {𝑦𝐵 ∣ ¬ 𝑦 𝑥}))
8279, 81ax-mp 5 . . . . . . . . . . 11 ({𝑧𝐵 ∣ ¬ 𝑧 𝑟} ∈ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ↔ ∃𝑥𝐵 {𝑧𝐵 ∣ ¬ 𝑧 𝑟} = {𝑦𝐵 ∣ ¬ 𝑦 𝑥})
8378, 82sylibr 224 . . . . . . . . . 10 (𝑟𝐵 → {𝑧𝐵 ∣ ¬ 𝑧 𝑟} ∈ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}))
8483adantl 473 . . . . . . . . 9 (((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) → {𝑧𝐵 ∣ ¬ 𝑧 𝑟} ∈ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}))
8569, 84sseldd 3745 . . . . . . . 8 (((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) → {𝑧𝐵 ∣ ¬ 𝑧 𝑟} ∈ 𝐽)
8685ad2antrr 764 . . . . . . 7 (((((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) ∧ (∃𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃𝑦𝐴 ¬ 𝑦 𝑟)) ∧ ¬ 𝑟𝐴) → {𝑧𝐵 ∣ ¬ 𝑧 𝑟} ∈ 𝐽)
87 simpll 807 . . . . . . . . 9 (((((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) ∧ (∃𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃𝑦𝐴 ¬ 𝑦 𝑟)) ∧ ¬ 𝑟𝐴) → ((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵))
88 simpr 479 . . . . . . . . 9 (((((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) ∧ (∃𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃𝑦𝐴 ¬ 𝑦 𝑟)) ∧ ¬ 𝑟𝐴) → ¬ 𝑟𝐴)
8987, 88jca 555 . . . . . . . 8 (((((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) ∧ (∃𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃𝑦𝐴 ¬ 𝑦 𝑟)) ∧ ¬ 𝑟𝐴) → (((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) ∧ ¬ 𝑟𝐴))
90 simplrl 819 . . . . . . . 8 (((((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) ∧ (∃𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃𝑦𝐴 ¬ 𝑦 𝑟)) ∧ ¬ 𝑟𝐴) → ∃𝑥𝐴 ¬ 𝑟 𝑥)
91 ssel 3738 . . . . . . . . . . . . . . 15 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
9291ancrd 578 . . . . . . . . . . . . . 14 (𝐴𝐵 → (𝑥𝐴 → (𝑥𝐵𝑥𝐴)))
9392anim1d 589 . . . . . . . . . . . . 13 (𝐴𝐵 → ((𝑥𝐴 ∧ ¬ 𝑟 𝑥) → ((𝑥𝐵𝑥𝐴) ∧ ¬ 𝑟 𝑥)))
9493impl 651 . . . . . . . . . . . 12 (((𝐴𝐵𝑥𝐴) ∧ ¬ 𝑟 𝑥) → ((𝑥𝐵𝑥𝐴) ∧ ¬ 𝑟 𝑥))
95 elin 3939 . . . . . . . . . . . . 13 (𝑥 ∈ ({𝑧𝐵 ∣ ¬ 𝑟 𝑧} ∩ 𝐴) ↔ (𝑥 ∈ {𝑧𝐵 ∣ ¬ 𝑟 𝑧} ∧ 𝑥𝐴))
96 breq2 4808 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑥 → (𝑟 𝑧𝑟 𝑥))
9796notbid 307 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥 → (¬ 𝑟 𝑧 ↔ ¬ 𝑟 𝑥))
9897elrab 3504 . . . . . . . . . . . . . 14 (𝑥 ∈ {𝑧𝐵 ∣ ¬ 𝑟 𝑧} ↔ (𝑥𝐵 ∧ ¬ 𝑟 𝑥))
9998anbi1i 733 . . . . . . . . . . . . 13 ((𝑥 ∈ {𝑧𝐵 ∣ ¬ 𝑟 𝑧} ∧ 𝑥𝐴) ↔ ((𝑥𝐵 ∧ ¬ 𝑟 𝑥) ∧ 𝑥𝐴))
100 an32 874 . . . . . . . . . . . . 13 (((𝑥𝐵 ∧ ¬ 𝑟 𝑥) ∧ 𝑥𝐴) ↔ ((𝑥𝐵𝑥𝐴) ∧ ¬ 𝑟 𝑥))
10195, 99, 1003bitri 286 . . . . . . . . . . . 12 (𝑥 ∈ ({𝑧𝐵 ∣ ¬ 𝑟 𝑧} ∩ 𝐴) ↔ ((𝑥𝐵𝑥𝐴) ∧ ¬ 𝑟 𝑥))
10294, 101sylibr 224 . . . . . . . . . . 11 (((𝐴𝐵𝑥𝐴) ∧ ¬ 𝑟 𝑥) → 𝑥 ∈ ({𝑧𝐵 ∣ ¬ 𝑟 𝑧} ∩ 𝐴))
103 ne0i 4064 . . . . . . . . . . 11 (𝑥 ∈ ({𝑧𝐵 ∣ ¬ 𝑟 𝑧} ∩ 𝐴) → ({𝑧𝐵 ∣ ¬ 𝑟 𝑧} ∩ 𝐴) ≠ ∅)
104102, 103syl 17 . . . . . . . . . 10 (((𝐴𝐵𝑥𝐴) ∧ ¬ 𝑟 𝑥) → ({𝑧𝐵 ∣ ¬ 𝑟 𝑧} ∩ 𝐴) ≠ ∅)
10525, 104sylanl1 685 . . . . . . . . 9 ((((((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) ∧ ¬ 𝑟𝐴) ∧ 𝑥𝐴) ∧ ¬ 𝑟 𝑥) → ({𝑧𝐵 ∣ ¬ 𝑟 𝑧} ∩ 𝐴) ≠ ∅)
106105r19.29an 3215 . . . . . . . 8 (((((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) ∧ ¬ 𝑟𝐴) ∧ ∃𝑥𝐴 ¬ 𝑟 𝑥) → ({𝑧𝐵 ∣ ¬ 𝑟 𝑧} ∩ 𝐴) ≠ ∅)
10789, 90, 106syl2anc 696 . . . . . . 7 (((((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) ∧ (∃𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃𝑦𝐴 ¬ 𝑦 𝑟)) ∧ ¬ 𝑟𝐴) → ({𝑧𝐵 ∣ ¬ 𝑟 𝑧} ∩ 𝐴) ≠ ∅)
108 simplrr 820 . . . . . . . 8 (((((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) ∧ (∃𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃𝑦𝐴 ¬ 𝑦 𝑟)) ∧ ¬ 𝑟𝐴) → ∃𝑦𝐴 ¬ 𝑦 𝑟)
109 ssel 3738 . . . . . . . . . . . . . . 15 (𝐴𝐵 → (𝑦𝐴𝑦𝐵))
110109ancrd 578 . . . . . . . . . . . . . 14 (𝐴𝐵 → (𝑦𝐴 → (𝑦𝐵𝑦𝐴)))
111110anim1d 589 . . . . . . . . . . . . 13 (𝐴𝐵 → ((𝑦𝐴 ∧ ¬ 𝑦 𝑟) → ((𝑦𝐵𝑦𝐴) ∧ ¬ 𝑦 𝑟)))
112111impl 651 . . . . . . . . . . . 12 (((𝐴𝐵𝑦𝐴) ∧ ¬ 𝑦 𝑟) → ((𝑦𝐵𝑦𝐴) ∧ ¬ 𝑦 𝑟))
113 elin 3939 . . . . . . . . . . . . 13 (𝑦 ∈ ({𝑧𝐵 ∣ ¬ 𝑧 𝑟} ∩ 𝐴) ↔ (𝑦 ∈ {𝑧𝐵 ∣ ¬ 𝑧 𝑟} ∧ 𝑦𝐴))
11471elrab 3504 . . . . . . . . . . . . . 14 (𝑦 ∈ {𝑧𝐵 ∣ ¬ 𝑧 𝑟} ↔ (𝑦𝐵 ∧ ¬ 𝑦 𝑟))
115114anbi1i 733 . . . . . . . . . . . . 13 ((𝑦 ∈ {𝑧𝐵 ∣ ¬ 𝑧 𝑟} ∧ 𝑦𝐴) ↔ ((𝑦𝐵 ∧ ¬ 𝑦 𝑟) ∧ 𝑦𝐴))
116 an32 874 . . . . . . . . . . . . 13 (((𝑦𝐵 ∧ ¬ 𝑦 𝑟) ∧ 𝑦𝐴) ↔ ((𝑦𝐵𝑦𝐴) ∧ ¬ 𝑦 𝑟))
117113, 115, 1163bitri 286 . . . . . . . . . . . 12 (𝑦 ∈ ({𝑧𝐵 ∣ ¬ 𝑧 𝑟} ∩ 𝐴) ↔ ((𝑦𝐵𝑦𝐴) ∧ ¬ 𝑦 𝑟))
118112, 117sylibr 224 . . . . . . . . . . 11 (((𝐴𝐵𝑦𝐴) ∧ ¬ 𝑦 𝑟) → 𝑦 ∈ ({𝑧𝐵 ∣ ¬ 𝑧 𝑟} ∩ 𝐴))
119 ne0i 4064 . . . . . . . . . . 11 (𝑦 ∈ ({𝑧𝐵 ∣ ¬ 𝑧 𝑟} ∩ 𝐴) → ({𝑧𝐵 ∣ ¬ 𝑧 𝑟} ∩ 𝐴) ≠ ∅)
120118, 119syl 17 . . . . . . . . . 10 (((𝐴𝐵𝑦𝐴) ∧ ¬ 𝑦 𝑟) → ({𝑧𝐵 ∣ ¬ 𝑧 𝑟} ∩ 𝐴) ≠ ∅)
12125, 120sylanl1 685 . . . . . . . . 9 ((((((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) ∧ ¬ 𝑟𝐴) ∧ 𝑦𝐴) ∧ ¬ 𝑦 𝑟) → ({𝑧𝐵 ∣ ¬ 𝑧 𝑟} ∩ 𝐴) ≠ ∅)
122121r19.29an 3215 . . . . . . . 8 (((((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) ∧ ¬ 𝑟𝐴) ∧ ∃𝑦𝐴 ¬ 𝑦 𝑟) → ({𝑧𝐵 ∣ ¬ 𝑧 𝑟} ∩ 𝐴) ≠ ∅)
12389, 108, 122syl2anc 696 . . . . . . 7 (((((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) ∧ (∃𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃𝑦𝐴 ¬ 𝑦 𝑟)) ∧ ¬ 𝑟𝐴) → ({𝑧𝐵 ∣ ¬ 𝑧 𝑟} ∩ 𝐴) ≠ ∅)
12417, 10trleile 29996 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Toset ∧ 𝑟𝐵𝑧𝐵) → (𝑟 𝑧𝑧 𝑟))
125 oran 518 . . . . . . . . . . . . . . . 16 ((𝑟 𝑧𝑧 𝑟) ↔ ¬ (¬ 𝑟 𝑧 ∧ ¬ 𝑧 𝑟))
126124, 125sylib 208 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Toset ∧ 𝑟𝐵𝑧𝐵) → ¬ (¬ 𝑟 𝑧 ∧ ¬ 𝑧 𝑟))
1271263expa 1112 . . . . . . . . . . . . . 14 (((𝐾 ∈ Toset ∧ 𝑟𝐵) ∧ 𝑧𝐵) → ¬ (¬ 𝑟 𝑧 ∧ ¬ 𝑧 𝑟))
128127nrexdv 3139 . . . . . . . . . . . . 13 ((𝐾 ∈ Toset ∧ 𝑟𝐵) → ¬ ∃𝑧𝐵𝑟 𝑧 ∧ ¬ 𝑧 𝑟))
129 rabid 3254 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ {𝑧𝐵 ∣ ¬ 𝑟 𝑧} ↔ (𝑧𝐵 ∧ ¬ 𝑟 𝑧))
130 rabid 3254 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ {𝑧𝐵 ∣ ¬ 𝑧 𝑟} ↔ (𝑧𝐵 ∧ ¬ 𝑧 𝑟))
131129, 130anbi12i 735 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ {𝑧𝐵 ∣ ¬ 𝑟 𝑧} ∧ 𝑧 ∈ {𝑧𝐵 ∣ ¬ 𝑧 𝑟}) ↔ ((𝑧𝐵 ∧ ¬ 𝑟 𝑧) ∧ (𝑧𝐵 ∧ ¬ 𝑧 𝑟)))
132 elin 3939 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ({𝑧𝐵 ∣ ¬ 𝑟 𝑧} ∩ {𝑧𝐵 ∣ ¬ 𝑧 𝑟}) ↔ (𝑧 ∈ {𝑧𝐵 ∣ ¬ 𝑟 𝑧} ∧ 𝑧 ∈ {𝑧𝐵 ∣ ¬ 𝑧 𝑟}))
133 anandi 906 . . . . . . . . . . . . . . . . 17 ((𝑧𝐵 ∧ (¬ 𝑟 𝑧 ∧ ¬ 𝑧 𝑟)) ↔ ((𝑧𝐵 ∧ ¬ 𝑟 𝑧) ∧ (𝑧𝐵 ∧ ¬ 𝑧 𝑟)))
134131, 132, 1333bitr4i 292 . . . . . . . . . . . . . . . 16 (𝑧 ∈ ({𝑧𝐵 ∣ ¬ 𝑟 𝑧} ∩ {𝑧𝐵 ∣ ¬ 𝑧 𝑟}) ↔ (𝑧𝐵 ∧ (¬ 𝑟 𝑧 ∧ ¬ 𝑧 𝑟)))
135134exbii 1923 . . . . . . . . . . . . . . 15 (∃𝑧 𝑧 ∈ ({𝑧𝐵 ∣ ¬ 𝑟 𝑧} ∩ {𝑧𝐵 ∣ ¬ 𝑧 𝑟}) ↔ ∃𝑧(𝑧𝐵 ∧ (¬ 𝑟 𝑧 ∧ ¬ 𝑧 𝑟)))
136 nfrab1 3261 . . . . . . . . . . . . . . . . 17 𝑧{𝑧𝐵 ∣ ¬ 𝑟 𝑧}
137 nfrab1 3261 . . . . . . . . . . . . . . . . 17 𝑧{𝑧𝐵 ∣ ¬ 𝑧 𝑟}
138136, 137nfin 3963 . . . . . . . . . . . . . . . 16 𝑧({𝑧𝐵 ∣ ¬ 𝑟 𝑧} ∩ {𝑧𝐵 ∣ ¬ 𝑧 𝑟})
139138n0f 4070 . . . . . . . . . . . . . . 15 (({𝑧𝐵 ∣ ¬ 𝑟 𝑧} ∩ {𝑧𝐵 ∣ ¬ 𝑧 𝑟}) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ ({𝑧𝐵 ∣ ¬ 𝑟 𝑧} ∩ {𝑧𝐵 ∣ ¬ 𝑧 𝑟}))
140 df-rex 3056 . . . . . . . . . . . . . . 15 (∃𝑧𝐵𝑟 𝑧 ∧ ¬ 𝑧 𝑟) ↔ ∃𝑧(𝑧𝐵 ∧ (¬ 𝑟 𝑧 ∧ ¬ 𝑧 𝑟)))
141135, 139, 1403bitr4i 292 . . . . . . . . . . . . . 14 (({𝑧𝐵 ∣ ¬ 𝑟 𝑧} ∩ {𝑧𝐵 ∣ ¬ 𝑧 𝑟}) ≠ ∅ ↔ ∃𝑧𝐵𝑟 𝑧 ∧ ¬ 𝑧 𝑟))
142141necon1bbii 2981 . . . . . . . . . . . . 13 (¬ ∃𝑧𝐵𝑟 𝑧 ∧ ¬ 𝑧 𝑟) ↔ ({𝑧𝐵 ∣ ¬ 𝑟 𝑧} ∩ {𝑧𝐵 ∣ ¬ 𝑧 𝑟}) = ∅)
143128, 142sylib 208 . . . . . . . . . . . 12 ((𝐾 ∈ Toset ∧ 𝑟𝐵) → ({𝑧𝐵 ∣ ¬ 𝑟 𝑧} ∩ {𝑧𝐵 ∣ ¬ 𝑧 𝑟}) = ∅)
144143adantlr 753 . . . . . . . . . . 11 (((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) → ({𝑧𝐵 ∣ ¬ 𝑟 𝑧} ∩ {𝑧𝐵 ∣ ¬ 𝑧 𝑟}) = ∅)
145144adantr 472 . . . . . . . . . 10 ((((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) ∧ ¬ 𝑟𝐴) → ({𝑧𝐵 ∣ ¬ 𝑟 𝑧} ∩ {𝑧𝐵 ∣ ¬ 𝑧 𝑟}) = ∅)
146145ineq1d 3956 . . . . . . . . 9 ((((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) ∧ ¬ 𝑟𝐴) → (({𝑧𝐵 ∣ ¬ 𝑟 𝑧} ∩ {𝑧𝐵 ∣ ¬ 𝑧 𝑟}) ∩ 𝐴) = (∅ ∩ 𝐴))
147 0in 4112 . . . . . . . . 9 (∅ ∩ 𝐴) = ∅
148146, 147syl6eq 2810 . . . . . . . 8 ((((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) ∧ ¬ 𝑟𝐴) → (({𝑧𝐵 ∣ ¬ 𝑟 𝑧} ∩ {𝑧𝐵 ∣ ¬ 𝑧 𝑟}) ∩ 𝐴) = ∅)
149148adantlr 753 . . . . . . 7 (((((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) ∧ (∃𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃𝑦𝐴 ¬ 𝑦 𝑟)) ∧ ¬ 𝑟𝐴) → (({𝑧𝐵 ∣ ¬ 𝑟 𝑧} ∩ {𝑧𝐵 ∣ ¬ 𝑧 𝑟}) ∩ 𝐴) = ∅)
150 simplr 809 . . . . . . . . . 10 ((((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) ∧ ¬ 𝑟𝐴) → 𝑟𝐵)
151 simpr 479 . . . . . . . . . 10 ((((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) ∧ ¬ 𝑟𝐴) → ¬ 𝑟𝐴)
152 vex 3343 . . . . . . . . . . . . . . 15 𝑟 ∈ V
153152snss 4460 . . . . . . . . . . . . . 14 (𝑟𝐵 ↔ {𝑟} ⊆ 𝐵)
154 eldif 3725 . . . . . . . . . . . . . . . 16 (𝑟 ∈ (𝐵𝐴) ↔ (𝑟𝐵 ∧ ¬ 𝑟𝐴))
155152snss 4460 . . . . . . . . . . . . . . . 16 (𝑟 ∈ (𝐵𝐴) ↔ {𝑟} ⊆ (𝐵𝐴))
156154, 155bitr3i 266 . . . . . . . . . . . . . . 15 ((𝑟𝐵 ∧ ¬ 𝑟𝐴) ↔ {𝑟} ⊆ (𝐵𝐴))
157 ssconb 3886 . . . . . . . . . . . . . . 15 (({𝑟} ⊆ 𝐵𝐴𝐵) → ({𝑟} ⊆ (𝐵𝐴) ↔ 𝐴 ⊆ (𝐵 ∖ {𝑟})))
158156, 157syl5bb 272 . . . . . . . . . . . . . 14 (({𝑟} ⊆ 𝐵𝐴𝐵) → ((𝑟𝐵 ∧ ¬ 𝑟𝐴) ↔ 𝐴 ⊆ (𝐵 ∖ {𝑟})))
159153, 158sylanb 490 . . . . . . . . . . . . 13 ((𝑟𝐵𝐴𝐵) → ((𝑟𝐵 ∧ ¬ 𝑟𝐴) ↔ 𝐴 ⊆ (𝐵 ∖ {𝑟})))
160159adantl 473 . . . . . . . . . . . 12 ((𝐾 ∈ Toset ∧ (𝑟𝐵𝐴𝐵)) → ((𝑟𝐵 ∧ ¬ 𝑟𝐴) ↔ 𝐴 ⊆ (𝐵 ∖ {𝑟})))
161160anass1rs 884 . . . . . . . . . . 11 (((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) → ((𝑟𝐵 ∧ ¬ 𝑟𝐴) ↔ 𝐴 ⊆ (𝐵 ∖ {𝑟})))
162161adantr 472 . . . . . . . . . 10 ((((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) ∧ ¬ 𝑟𝐴) → ((𝑟𝐵 ∧ ¬ 𝑟𝐴) ↔ 𝐴 ⊆ (𝐵 ∖ {𝑟})))
163150, 151, 162mpbi2and 994 . . . . . . . . 9 ((((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) ∧ ¬ 𝑟𝐴) → 𝐴 ⊆ (𝐵 ∖ {𝑟}))
1647ad3antrrr 768 . . . . . . . . . 10 ((((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) ∧ ¬ 𝑟𝐴) → 𝐾 ∈ Poset)
165 nfv 1992 . . . . . . . . . . 11 𝑧(𝐾 ∈ Poset ∧ 𝑟𝐵)
166136, 137nfun 3912 . . . . . . . . . . 11 𝑧({𝑧𝐵 ∣ ¬ 𝑟 𝑧} ∪ {𝑧𝐵 ∣ ¬ 𝑧 𝑟})
167 nfcv 2902 . . . . . . . . . . 11 𝑧(𝐵 ∖ {𝑟})
168 ianor 510 . . . . . . . . . . . . . . 15 (¬ (𝑟 𝑧𝑧 𝑟) ↔ (¬ 𝑟 𝑧 ∨ ¬ 𝑧 𝑟))
16917, 10posrasymb 29987 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ Poset ∧ 𝑟𝐵𝑧𝐵) → ((𝑟 𝑧𝑧 𝑟) ↔ 𝑟 = 𝑧))
170 equcom 2100 . . . . . . . . . . . . . . . . 17 (𝑟 = 𝑧𝑧 = 𝑟)
171169, 170syl6bb 276 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Poset ∧ 𝑟𝐵𝑧𝐵) → ((𝑟 𝑧𝑧 𝑟) ↔ 𝑧 = 𝑟))
172171necon3bbid 2969 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Poset ∧ 𝑟𝐵𝑧𝐵) → (¬ (𝑟 𝑧𝑧 𝑟) ↔ 𝑧𝑟))
173168, 172syl5bbr 274 . . . . . . . . . . . . . 14 ((𝐾 ∈ Poset ∧ 𝑟𝐵𝑧𝐵) → ((¬ 𝑟 𝑧 ∨ ¬ 𝑧 𝑟) ↔ 𝑧𝑟))
1741733expia 1115 . . . . . . . . . . . . 13 ((𝐾 ∈ Poset ∧ 𝑟𝐵) → (𝑧𝐵 → ((¬ 𝑟 𝑧 ∨ ¬ 𝑧 𝑟) ↔ 𝑧𝑟)))
175174pm5.32d 674 . . . . . . . . . . . 12 ((𝐾 ∈ Poset ∧ 𝑟𝐵) → ((𝑧𝐵 ∧ (¬ 𝑟 𝑧 ∨ ¬ 𝑧 𝑟)) ↔ (𝑧𝐵𝑧𝑟)))
176129, 130orbi12i 544 . . . . . . . . . . . . 13 ((𝑧 ∈ {𝑧𝐵 ∣ ¬ 𝑟 𝑧} ∨ 𝑧 ∈ {𝑧𝐵 ∣ ¬ 𝑧 𝑟}) ↔ ((𝑧𝐵 ∧ ¬ 𝑟 𝑧) ∨ (𝑧𝐵 ∧ ¬ 𝑧 𝑟)))
177 elun 3896 . . . . . . . . . . . . 13 (𝑧 ∈ ({𝑧𝐵 ∣ ¬ 𝑟 𝑧} ∪ {𝑧𝐵 ∣ ¬ 𝑧 𝑟}) ↔ (𝑧 ∈ {𝑧𝐵 ∣ ¬ 𝑟 𝑧} ∨ 𝑧 ∈ {𝑧𝐵 ∣ ¬ 𝑧 𝑟}))
178 andi 947 . . . . . . . . . . . . 13 ((𝑧𝐵 ∧ (¬ 𝑟 𝑧 ∨ ¬ 𝑧 𝑟)) ↔ ((𝑧𝐵 ∧ ¬ 𝑟 𝑧) ∨ (𝑧𝐵 ∧ ¬ 𝑧 𝑟)))
179176, 177, 1783bitr4ri 293 . . . . . . . . . . . 12 ((𝑧𝐵 ∧ (¬ 𝑟 𝑧 ∨ ¬ 𝑧 𝑟)) ↔ 𝑧 ∈ ({𝑧𝐵 ∣ ¬ 𝑟 𝑧} ∪ {𝑧𝐵 ∣ ¬ 𝑧 𝑟}))
180 eldifsn 4462 . . . . . . . . . . . . 13 (𝑧 ∈ (𝐵 ∖ {𝑟}) ↔ (𝑧𝐵𝑧𝑟))
181180bicomi 214 . . . . . . . . . . . 12 ((𝑧𝐵𝑧𝑟) ↔ 𝑧 ∈ (𝐵 ∖ {𝑟}))
182175, 179, 1813bitr3g 302 . . . . . . . . . . 11 ((𝐾 ∈ Poset ∧ 𝑟𝐵) → (𝑧 ∈ ({𝑧𝐵 ∣ ¬ 𝑟 𝑧} ∪ {𝑧𝐵 ∣ ¬ 𝑧 𝑟}) ↔ 𝑧 ∈ (𝐵 ∖ {𝑟})))
183165, 166, 167, 182eqrd 3763 . . . . . . . . . 10 ((𝐾 ∈ Poset ∧ 𝑟𝐵) → ({𝑧𝐵 ∣ ¬ 𝑟 𝑧} ∪ {𝑧𝐵 ∣ ¬ 𝑧 𝑟}) = (𝐵 ∖ {𝑟}))
184164, 150, 183syl2anc 696 . . . . . . . . 9 ((((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) ∧ ¬ 𝑟𝐴) → ({𝑧𝐵 ∣ ¬ 𝑟 𝑧} ∪ {𝑧𝐵 ∣ ¬ 𝑧 𝑟}) = (𝐵 ∖ {𝑟}))
185163, 184sseqtr4d 3783 . . . . . . . 8 ((((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) ∧ ¬ 𝑟𝐴) → 𝐴 ⊆ ({𝑧𝐵 ∣ ¬ 𝑟 𝑧} ∪ {𝑧𝐵 ∣ ¬ 𝑧 𝑟}))
186185adantlr 753 . . . . . . 7 (((((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) ∧ (∃𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃𝑦𝐴 ¬ 𝑦 𝑟)) ∧ ¬ 𝑟𝐴) → 𝐴 ⊆ ({𝑧𝐵 ∣ ¬ 𝑟 𝑧} ∪ {𝑧𝐵 ∣ ¬ 𝑧 𝑟}))
18724, 26, 68, 86, 107, 123, 149, 186nconnsubb 21448 . . . . . 6 (((((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) ∧ (∃𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃𝑦𝐴 ¬ 𝑦 𝑟)) ∧ ¬ 𝑟𝐴) → ¬ (𝐽t 𝐴) ∈ Conn)
188187anasss 682 . . . . 5 ((((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) ∧ ((∃𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃𝑦𝐴 ¬ 𝑦 𝑟) ∧ ¬ 𝑟𝐴)) → ¬ (𝐽t 𝐴) ∈ Conn)
189188adantllr 757 . . . 4 (((((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ ¬ ∀𝑥𝐴𝑦𝐴𝑟𝐵 ((𝑥 𝑟𝑟 𝑦) → 𝑟𝐴)) ∧ 𝑟𝐵) ∧ ((∃𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃𝑦𝐴 ¬ 𝑦 𝑟) ∧ ¬ 𝑟𝐴)) → ¬ (𝐽t 𝐴) ∈ Conn)
190 rexanali 3136 . . . . . . . . . . 11 (∃𝑟𝐵 ((𝑥 𝑟𝑟 𝑦) ∧ ¬ 𝑟𝐴) ↔ ¬ ∀𝑟𝐵 ((𝑥 𝑟𝑟 𝑦) → 𝑟𝐴))
191190rexbii 3179 . . . . . . . . . 10 (∃𝑦𝐴𝑟𝐵 ((𝑥 𝑟𝑟 𝑦) ∧ ¬ 𝑟𝐴) ↔ ∃𝑦𝐴 ¬ ∀𝑟𝐵 ((𝑥 𝑟𝑟 𝑦) → 𝑟𝐴))
192 rexcom 3237 . . . . . . . . . 10 (∃𝑦𝐴𝑟𝐵 ((𝑥 𝑟𝑟 𝑦) ∧ ¬ 𝑟𝐴) ↔ ∃𝑟𝐵𝑦𝐴 ((𝑥 𝑟𝑟 𝑦) ∧ ¬ 𝑟𝐴))
193 rexnal 3133 . . . . . . . . . 10 (∃𝑦𝐴 ¬ ∀𝑟𝐵 ((𝑥 𝑟𝑟 𝑦) → 𝑟𝐴) ↔ ¬ ∀𝑦𝐴𝑟𝐵 ((𝑥 𝑟𝑟 𝑦) → 𝑟𝐴))
194191, 192, 1933bitr3i 290 . . . . . . . . 9 (∃𝑟𝐵𝑦𝐴 ((𝑥 𝑟𝑟 𝑦) ∧ ¬ 𝑟𝐴) ↔ ¬ ∀𝑦𝐴𝑟𝐵 ((𝑥 𝑟𝑟 𝑦) → 𝑟𝐴))
195194rexbii 3179 . . . . . . . 8 (∃𝑥𝐴𝑟𝐵𝑦𝐴 ((𝑥 𝑟𝑟 𝑦) ∧ ¬ 𝑟𝐴) ↔ ∃𝑥𝐴 ¬ ∀𝑦𝐴𝑟𝐵 ((𝑥 𝑟𝑟 𝑦) → 𝑟𝐴))
196 rexcom 3237 . . . . . . . 8 (∃𝑥𝐴𝑟𝐵𝑦𝐴 ((𝑥 𝑟𝑟 𝑦) ∧ ¬ 𝑟𝐴) ↔ ∃𝑟𝐵𝑥𝐴𝑦𝐴 ((𝑥 𝑟𝑟 𝑦) ∧ ¬ 𝑟𝐴))
197 rexnal 3133 . . . . . . . 8 (∃𝑥𝐴 ¬ ∀𝑦𝐴𝑟𝐵 ((𝑥 𝑟𝑟 𝑦) → 𝑟𝐴) ↔ ¬ ∀𝑥𝐴𝑦𝐴𝑟𝐵 ((𝑥 𝑟𝑟 𝑦) → 𝑟𝐴))
198195, 196, 1973bitr3i 290 . . . . . . 7 (∃𝑟𝐵𝑥𝐴𝑦𝐴 ((𝑥 𝑟𝑟 𝑦) ∧ ¬ 𝑟𝐴) ↔ ¬ ∀𝑥𝐴𝑦𝐴𝑟𝐵 ((𝑥 𝑟𝑟 𝑦) → 𝑟𝐴))
199 r19.41v 3227 . . . . . . . . . 10 (∃𝑦𝐴 ((𝑥 𝑟𝑟 𝑦) ∧ ¬ 𝑟𝐴) ↔ (∃𝑦𝐴 (𝑥 𝑟𝑟 𝑦) ∧ ¬ 𝑟𝐴))
200199rexbii 3179 . . . . . . . . 9 (∃𝑥𝐴𝑦𝐴 ((𝑥 𝑟𝑟 𝑦) ∧ ¬ 𝑟𝐴) ↔ ∃𝑥𝐴 (∃𝑦𝐴 (𝑥 𝑟𝑟 𝑦) ∧ ¬ 𝑟𝐴))
201 r19.41v 3227 . . . . . . . . 9 (∃𝑥𝐴 (∃𝑦𝐴 (𝑥 𝑟𝑟 𝑦) ∧ ¬ 𝑟𝐴) ↔ (∃𝑥𝐴𝑦𝐴 (𝑥 𝑟𝑟 𝑦) ∧ ¬ 𝑟𝐴))
202 reeanv 3245 . . . . . . . . . 10 (∃𝑥𝐴𝑦𝐴 (𝑥 𝑟𝑟 𝑦) ↔ (∃𝑥𝐴 𝑥 𝑟 ∧ ∃𝑦𝐴 𝑟 𝑦))
203202anbi1i 733 . . . . . . . . 9 ((∃𝑥𝐴𝑦𝐴 (𝑥 𝑟𝑟 𝑦) ∧ ¬ 𝑟𝐴) ↔ ((∃𝑥𝐴 𝑥 𝑟 ∧ ∃𝑦𝐴 𝑟 𝑦) ∧ ¬ 𝑟𝐴))
204200, 201, 2033bitri 286 . . . . . . . 8 (∃𝑥𝐴𝑦𝐴 ((𝑥 𝑟𝑟 𝑦) ∧ ¬ 𝑟𝐴) ↔ ((∃𝑥𝐴 𝑥 𝑟 ∧ ∃𝑦𝐴 𝑟 𝑦) ∧ ¬ 𝑟𝐴))
205204rexbii 3179 . . . . . . 7 (∃𝑟𝐵𝑥𝐴𝑦𝐴 ((𝑥 𝑟𝑟 𝑦) ∧ ¬ 𝑟𝐴) ↔ ∃𝑟𝐵 ((∃𝑥𝐴 𝑥 𝑟 ∧ ∃𝑦𝐴 𝑟 𝑦) ∧ ¬ 𝑟𝐴))
206198, 205bitr3i 266 . . . . . 6 (¬ ∀𝑥𝐴𝑦𝐴𝑟𝐵 ((𝑥 𝑟𝑟 𝑦) → 𝑟𝐴) ↔ ∃𝑟𝐵 ((∃𝑥𝐴 𝑥 𝑟 ∧ ∃𝑦𝐴 𝑟 𝑦) ∧ ¬ 𝑟𝐴))
20727ad2antrr 764 . . . . . . . . . . . . . 14 (((((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) ∧ ¬ 𝑟𝐴) ∧ 𝑥𝐴) → 𝐾 ∈ Toset)
20825sselda 3744 . . . . . . . . . . . . . 14 (((((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) ∧ ¬ 𝑟𝐴) ∧ 𝑥𝐴) → 𝑥𝐵)
209 simpllr 817 . . . . . . . . . . . . . 14 (((((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) ∧ ¬ 𝑟𝐴) ∧ 𝑥𝐴) → 𝑟𝐵)
21017, 10trleile 29996 . . . . . . . . . . . . . 14 ((𝐾 ∈ Toset ∧ 𝑥𝐵𝑟𝐵) → (𝑥 𝑟𝑟 𝑥))
211207, 208, 209, 210syl3anc 1477 . . . . . . . . . . . . 13 (((((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) ∧ ¬ 𝑟𝐴) ∧ 𝑥𝐴) → (𝑥 𝑟𝑟 𝑥))
212 simpr 479 . . . . . . . . . . . . . . 15 (((((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) ∧ ¬ 𝑟𝐴) ∧ 𝑥𝐴) → 𝑥𝐴)
213 simplr 809 . . . . . . . . . . . . . . 15 (((((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) ∧ ¬ 𝑟𝐴) ∧ 𝑥𝐴) → ¬ 𝑟𝐴)
214 nelne2 3029 . . . . . . . . . . . . . . 15 ((𝑥𝐴 ∧ ¬ 𝑟𝐴) → 𝑥𝑟)
215212, 213, 214syl2anc 696 . . . . . . . . . . . . . 14 (((((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) ∧ ¬ 𝑟𝐴) ∧ 𝑥𝐴) → 𝑥𝑟)
216164adantr 472 . . . . . . . . . . . . . . 15 (((((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) ∧ ¬ 𝑟𝐴) ∧ 𝑥𝐴) → 𝐾 ∈ Poset)
21717, 10posrasymb 29987 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Poset ∧ 𝑥𝐵𝑟𝐵) → ((𝑥 𝑟𝑟 𝑥) ↔ 𝑥 = 𝑟))
218217necon3bbid 2969 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Poset ∧ 𝑥𝐵𝑟𝐵) → (¬ (𝑥 𝑟𝑟 𝑥) ↔ 𝑥𝑟))
219216, 208, 209, 218syl3anc 1477 . . . . . . . . . . . . . 14 (((((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) ∧ ¬ 𝑟𝐴) ∧ 𝑥𝐴) → (¬ (𝑥 𝑟𝑟 𝑥) ↔ 𝑥𝑟))
220215, 219mpbird 247 . . . . . . . . . . . . 13 (((((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) ∧ ¬ 𝑟𝐴) ∧ 𝑥𝐴) → ¬ (𝑥 𝑟𝑟 𝑥))
221211, 220jca 555 . . . . . . . . . . . 12 (((((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) ∧ ¬ 𝑟𝐴) ∧ 𝑥𝐴) → ((𝑥 𝑟𝑟 𝑥) ∧ ¬ (𝑥 𝑟𝑟 𝑥)))
222 pm5.17 968 . . . . . . . . . . . 12 (((𝑥 𝑟𝑟 𝑥) ∧ ¬ (𝑥 𝑟𝑟 𝑥)) ↔ (𝑥 𝑟 ↔ ¬ 𝑟 𝑥))
223221, 222sylib 208 . . . . . . . . . . 11 (((((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) ∧ ¬ 𝑟𝐴) ∧ 𝑥𝐴) → (𝑥 𝑟 ↔ ¬ 𝑟 𝑥))
224223rexbidva 3187 . . . . . . . . . 10 ((((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) ∧ ¬ 𝑟𝐴) → (∃𝑥𝐴 𝑥 𝑟 ↔ ∃𝑥𝐴 ¬ 𝑟 𝑥))
22527ad2antrr 764 . . . . . . . . . . . . . 14 (((((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) ∧ ¬ 𝑟𝐴) ∧ 𝑦𝐴) → 𝐾 ∈ Toset)
226 simpllr 817 . . . . . . . . . . . . . 14 (((((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) ∧ ¬ 𝑟𝐴) ∧ 𝑦𝐴) → 𝑟𝐵)
22725sselda 3744 . . . . . . . . . . . . . 14 (((((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) ∧ ¬ 𝑟𝐴) ∧ 𝑦𝐴) → 𝑦𝐵)
22817, 10trleile 29996 . . . . . . . . . . . . . 14 ((𝐾 ∈ Toset ∧ 𝑟𝐵𝑦𝐵) → (𝑟 𝑦𝑦 𝑟))
229225, 226, 227, 228syl3anc 1477 . . . . . . . . . . . . 13 (((((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) ∧ ¬ 𝑟𝐴) ∧ 𝑦𝐴) → (𝑟 𝑦𝑦 𝑟))
230 simpr 479 . . . . . . . . . . . . . . . 16 (((((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) ∧ ¬ 𝑟𝐴) ∧ 𝑦𝐴) → 𝑦𝐴)
231 simplr 809 . . . . . . . . . . . . . . . 16 (((((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) ∧ ¬ 𝑟𝐴) ∧ 𝑦𝐴) → ¬ 𝑟𝐴)
232 nelne2 3029 . . . . . . . . . . . . . . . 16 ((𝑦𝐴 ∧ ¬ 𝑟𝐴) → 𝑦𝑟)
233230, 231, 232syl2anc 696 . . . . . . . . . . . . . . 15 (((((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) ∧ ¬ 𝑟𝐴) ∧ 𝑦𝐴) → 𝑦𝑟)
234233necomd 2987 . . . . . . . . . . . . . 14 (((((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) ∧ ¬ 𝑟𝐴) ∧ 𝑦𝐴) → 𝑟𝑦)
235164adantr 472 . . . . . . . . . . . . . . 15 (((((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) ∧ ¬ 𝑟𝐴) ∧ 𝑦𝐴) → 𝐾 ∈ Poset)
23617, 10posrasymb 29987 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Poset ∧ 𝑟𝐵𝑦𝐵) → ((𝑟 𝑦𝑦 𝑟) ↔ 𝑟 = 𝑦))
237236necon3bbid 2969 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Poset ∧ 𝑟𝐵𝑦𝐵) → (¬ (𝑟 𝑦𝑦 𝑟) ↔ 𝑟𝑦))
238235, 226, 227, 237syl3anc 1477 . . . . . . . . . . . . . 14 (((((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) ∧ ¬ 𝑟𝐴) ∧ 𝑦𝐴) → (¬ (𝑟 𝑦𝑦 𝑟) ↔ 𝑟𝑦))
239234, 238mpbird 247 . . . . . . . . . . . . 13 (((((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) ∧ ¬ 𝑟𝐴) ∧ 𝑦𝐴) → ¬ (𝑟 𝑦𝑦 𝑟))
240229, 239jca 555 . . . . . . . . . . . 12 (((((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) ∧ ¬ 𝑟𝐴) ∧ 𝑦𝐴) → ((𝑟 𝑦𝑦 𝑟) ∧ ¬ (𝑟 𝑦𝑦 𝑟)))
241 pm5.17 968 . . . . . . . . . . . 12 (((𝑟 𝑦𝑦 𝑟) ∧ ¬ (𝑟 𝑦𝑦 𝑟)) ↔ (𝑟 𝑦 ↔ ¬ 𝑦 𝑟))
242240, 241sylib 208 . . . . . . . . . . 11 (((((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) ∧ ¬ 𝑟𝐴) ∧ 𝑦𝐴) → (𝑟 𝑦 ↔ ¬ 𝑦 𝑟))
243242rexbidva 3187 . . . . . . . . . 10 ((((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) ∧ ¬ 𝑟𝐴) → (∃𝑦𝐴 𝑟 𝑦 ↔ ∃𝑦𝐴 ¬ 𝑦 𝑟))
244224, 243anbi12d 749 . . . . . . . . 9 ((((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) ∧ ¬ 𝑟𝐴) → ((∃𝑥𝐴 𝑥 𝑟 ∧ ∃𝑦𝐴 𝑟 𝑦) ↔ (∃𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃𝑦𝐴 ¬ 𝑦 𝑟)))
245244ex 449 . . . . . . . 8 (((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) → (¬ 𝑟𝐴 → ((∃𝑥𝐴 𝑥 𝑟 ∧ ∃𝑦𝐴 𝑟 𝑦) ↔ (∃𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃𝑦𝐴 ¬ 𝑦 𝑟))))
246245pm5.32rd 675 . . . . . . 7 (((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ 𝑟𝐵) → (((∃𝑥𝐴 𝑥 𝑟 ∧ ∃𝑦𝐴 𝑟 𝑦) ∧ ¬ 𝑟𝐴) ↔ ((∃𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃𝑦𝐴 ¬ 𝑦 𝑟) ∧ ¬ 𝑟𝐴)))
247246rexbidva 3187 . . . . . 6 ((𝐾 ∈ Toset ∧ 𝐴𝐵) → (∃𝑟𝐵 ((∃𝑥𝐴 𝑥 𝑟 ∧ ∃𝑦𝐴 𝑟 𝑦) ∧ ¬ 𝑟𝐴) ↔ ∃𝑟𝐵 ((∃𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃𝑦𝐴 ¬ 𝑦 𝑟) ∧ ¬ 𝑟𝐴)))
248206, 247syl5bb 272 . . . . 5 ((𝐾 ∈ Toset ∧ 𝐴𝐵) → (¬ ∀𝑥𝐴𝑦𝐴𝑟𝐵 ((𝑥 𝑟𝑟 𝑦) → 𝑟𝐴) ↔ ∃𝑟𝐵 ((∃𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃𝑦𝐴 ¬ 𝑦 𝑟) ∧ ¬ 𝑟𝐴)))
249248biimpa 502 . . . 4 (((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ ¬ ∀𝑥𝐴𝑦𝐴𝑟𝐵 ((𝑥 𝑟𝑟 𝑦) → 𝑟𝐴)) → ∃𝑟𝐵 ((∃𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃𝑦𝐴 ¬ 𝑦 𝑟) ∧ ¬ 𝑟𝐴))
2506, 189, 249r19.29af 3214 . . 3 (((𝐾 ∈ Toset ∧ 𝐴𝐵) ∧ ¬ ∀𝑥𝐴𝑦𝐴𝑟𝐵 ((𝑥 𝑟𝑟 𝑦) → 𝑟𝐴)) → ¬ (𝐽t 𝐴) ∈ Conn)
251250ex 449 . 2 ((𝐾 ∈ Toset ∧ 𝐴𝐵) → (¬ ∀𝑥𝐴𝑦𝐴𝑟𝐵 ((𝑥 𝑟𝑟 𝑦) → 𝑟𝐴) → ¬ (𝐽t 𝐴) ∈ Conn))
252251con4d 114 1 ((𝐾 ∈ Toset ∧ 𝐴𝐵) → ((𝐽t 𝐴) ∈ Conn → ∀𝑥𝐴𝑦𝐴𝑟𝐵 ((𝑥 𝑟𝑟 𝑦) → 𝑟𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  w3a 1072   = wceq 1632  wex 1853  wcel 2139  wne 2932  wral 3050  wrex 3051  {crab 3054  Vcvv 3340  cdif 3712  cun 3713  cin 3714  wss 3715  c0 4058  {csn 4321   class class class wbr 4804  cmpt 4881   × cxp 5264  dom cdm 5266  ran crn 5267  cfv 6049  (class class class)co 6814  ficfi 8483  Basecbs 16079  lecple 16170  t crest 16303  topGenctg 16320  ordTopcordt 16381   Preset cpreset 17147  Posetcpo 17161  Tosetctos 17254  TopOnctopon 20937  Conncconn 21436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-en 8124  df-fin 8127  df-fi 8484  df-rest 16305  df-topgen 16326  df-ordt 16383  df-preset 17149  df-poset 17167  df-toset 17255  df-top 20921  df-topon 20938  df-bases 20972  df-cld 21045  df-conn 21437
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator