MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordsssuc Structured version   Visualization version   GIF version

Theorem ordsssuc 5969
Description: A subset of an ordinal belongs to its successor. (Contributed by NM, 28-Nov-2003.)
Assertion
Ref Expression
ordsssuc ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴𝐵𝐴 ∈ suc 𝐵))

Proof of Theorem ordsssuc
StepHypRef Expression
1 eloni 5890 . . 3 (𝐴 ∈ On → Ord 𝐴)
2 ordsseleq 5909 . . 3 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
31, 2sylan 489 . 2 ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
4 elsucg 5949 . . 3 (𝐴 ∈ On → (𝐴 ∈ suc 𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
54adantr 472 . 2 ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴 ∈ suc 𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
63, 5bitr4d 271 1 ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴𝐵𝐴 ∈ suc 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 382  wa 383   = wceq 1628  wcel 2135  wss 3711  Ord word 5879  Oncon0 5880  suc csuc 5882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1867  ax-4 1882  ax-5 1984  ax-6 2050  ax-7 2086  ax-9 2144  ax-10 2164  ax-11 2179  ax-12 2192  ax-13 2387  ax-ext 2736  ax-sep 4929  ax-nul 4937  ax-pr 5051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1631  df-ex 1850  df-nf 1855  df-sb 2043  df-eu 2607  df-mo 2608  df-clab 2743  df-cleq 2749  df-clel 2752  df-nfc 2887  df-ne 2929  df-ral 3051  df-rex 3052  df-rab 3055  df-v 3338  df-sbc 3573  df-dif 3714  df-un 3716  df-in 3718  df-ss 3725  df-pss 3727  df-nul 4055  df-if 4227  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4585  df-br 4801  df-opab 4861  df-tr 4901  df-eprel 5175  df-po 5183  df-so 5184  df-fr 5221  df-we 5223  df-ord 5883  df-on 5884  df-suc 5886
This theorem is referenced by:  onsssuc  5970  ordunisssuc  5987  ordpwsuc  7176  ordsucun  7186  cantnflt  8738  cantnflem1  8755  noetalem3  32167
  Copyright terms: Public domain W3C validator