MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordpwsuc Structured version   Visualization version   GIF version

Theorem ordpwsuc 7162
Description: The collection of ordinals in the power class of an ordinal is its successor. (Contributed by NM, 30-Jan-2005.)
Assertion
Ref Expression
ordpwsuc (Ord 𝐴 → (𝒫 𝐴 ∩ On) = suc 𝐴)

Proof of Theorem ordpwsuc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elin 3947 . . . 4 (𝑥 ∈ (𝒫 𝐴 ∩ On) ↔ (𝑥 ∈ 𝒫 𝐴𝑥 ∈ On))
2 selpw 4304 . . . . 5 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
32anbi2ci 611 . . . 4 ((𝑥 ∈ 𝒫 𝐴𝑥 ∈ On) ↔ (𝑥 ∈ On ∧ 𝑥𝐴))
41, 3bitri 264 . . 3 (𝑥 ∈ (𝒫 𝐴 ∩ On) ↔ (𝑥 ∈ On ∧ 𝑥𝐴))
5 ordsssuc 5955 . . . . . 6 ((𝑥 ∈ On ∧ Ord 𝐴) → (𝑥𝐴𝑥 ∈ suc 𝐴))
65expcom 398 . . . . 5 (Ord 𝐴 → (𝑥 ∈ On → (𝑥𝐴𝑥 ∈ suc 𝐴)))
76pm5.32d 566 . . . 4 (Ord 𝐴 → ((𝑥 ∈ On ∧ 𝑥𝐴) ↔ (𝑥 ∈ On ∧ 𝑥 ∈ suc 𝐴)))
8 simpr 471 . . . . 5 ((𝑥 ∈ On ∧ 𝑥 ∈ suc 𝐴) → 𝑥 ∈ suc 𝐴)
9 ordsuc 7161 . . . . . . 7 (Ord 𝐴 ↔ Ord suc 𝐴)
10 ordelon 5890 . . . . . . . 8 ((Ord suc 𝐴𝑥 ∈ suc 𝐴) → 𝑥 ∈ On)
1110ex 397 . . . . . . 7 (Ord suc 𝐴 → (𝑥 ∈ suc 𝐴𝑥 ∈ On))
129, 11sylbi 207 . . . . . 6 (Ord 𝐴 → (𝑥 ∈ suc 𝐴𝑥 ∈ On))
1312ancrd 541 . . . . 5 (Ord 𝐴 → (𝑥 ∈ suc 𝐴 → (𝑥 ∈ On ∧ 𝑥 ∈ suc 𝐴)))
148, 13impbid2 216 . . . 4 (Ord 𝐴 → ((𝑥 ∈ On ∧ 𝑥 ∈ suc 𝐴) ↔ 𝑥 ∈ suc 𝐴))
157, 14bitrd 268 . . 3 (Ord 𝐴 → ((𝑥 ∈ On ∧ 𝑥𝐴) ↔ 𝑥 ∈ suc 𝐴))
164, 15syl5bb 272 . 2 (Ord 𝐴 → (𝑥 ∈ (𝒫 𝐴 ∩ On) ↔ 𝑥 ∈ suc 𝐴))
1716eqrdv 2769 1 (Ord 𝐴 → (𝒫 𝐴 ∩ On) = suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  cin 3722  wss 3723  𝒫 cpw 4297  Ord word 5865  Oncon0 5866  suc csuc 5868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-tr 4887  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-ord 5869  df-on 5870  df-suc 5872
This theorem is referenced by:  onpwsuc  7163  orduniss2  7180
  Copyright terms: Public domain W3C validator