![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordpinq | Structured version Visualization version GIF version |
Description: Ordering of positive fractions in terms of positive integers. (Contributed by NM, 13-Feb-1996.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ordpinq | ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 <Q 𝐵 ↔ ((1st ‘𝐴) ·N (2nd ‘𝐵)) <N ((1st ‘𝐵) ·N (2nd ‘𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brinxp 5215 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 <pQ 𝐵 ↔ 𝐴( <pQ ∩ (Q × Q))𝐵)) | |
2 | df-ltnq 9778 | . . . 4 ⊢ <Q = ( <pQ ∩ (Q × Q)) | |
3 | 2 | breqi 4691 | . . 3 ⊢ (𝐴 <Q 𝐵 ↔ 𝐴( <pQ ∩ (Q × Q))𝐵) |
4 | 1, 3 | syl6bbr 278 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 <pQ 𝐵 ↔ 𝐴 <Q 𝐵)) |
5 | relxp 5160 | . . . . 5 ⊢ Rel (N × N) | |
6 | elpqn 9785 | . . . . 5 ⊢ (𝐴 ∈ Q → 𝐴 ∈ (N × N)) | |
7 | 1st2nd 7258 | . . . . 5 ⊢ ((Rel (N × N) ∧ 𝐴 ∈ (N × N)) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
8 | 5, 6, 7 | sylancr 696 | . . . 4 ⊢ (𝐴 ∈ Q → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
9 | elpqn 9785 | . . . . 5 ⊢ (𝐵 ∈ Q → 𝐵 ∈ (N × N)) | |
10 | 1st2nd 7258 | . . . . 5 ⊢ ((Rel (N × N) ∧ 𝐵 ∈ (N × N)) → 𝐵 = 〈(1st ‘𝐵), (2nd ‘𝐵)〉) | |
11 | 5, 9, 10 | sylancr 696 | . . . 4 ⊢ (𝐵 ∈ Q → 𝐵 = 〈(1st ‘𝐵), (2nd ‘𝐵)〉) |
12 | 8, 11 | breqan12d 4701 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 <pQ 𝐵 ↔ 〈(1st ‘𝐴), (2nd ‘𝐴)〉 <pQ 〈(1st ‘𝐵), (2nd ‘𝐵)〉)) |
13 | ordpipq 9802 | . . 3 ⊢ (〈(1st ‘𝐴), (2nd ‘𝐴)〉 <pQ 〈(1st ‘𝐵), (2nd ‘𝐵)〉 ↔ ((1st ‘𝐴) ·N (2nd ‘𝐵)) <N ((1st ‘𝐵) ·N (2nd ‘𝐴))) | |
14 | 12, 13 | syl6bb 276 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 <pQ 𝐵 ↔ ((1st ‘𝐴) ·N (2nd ‘𝐵)) <N ((1st ‘𝐵) ·N (2nd ‘𝐴)))) |
15 | 4, 14 | bitr3d 270 | 1 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 <Q 𝐵 ↔ ((1st ‘𝐴) ·N (2nd ‘𝐵)) <N ((1st ‘𝐵) ·N (2nd ‘𝐴)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∩ cin 3606 〈cop 4216 class class class wbr 4685 × cxp 5141 Rel wrel 5148 ‘cfv 5926 (class class class)co 6690 1st c1st 7208 2nd c2nd 7209 Ncnpi 9704 ·N cmi 9706 <N clti 9707 <pQ cltpq 9710 Qcnq 9712 <Q cltq 9718 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-omul 7610 df-ni 9732 df-mi 9734 df-lti 9735 df-ltpq 9770 df-nq 9772 df-ltnq 9778 |
This theorem is referenced by: ltsonq 9829 lterpq 9830 ltanq 9831 ltmnq 9832 ltexnq 9835 archnq 9840 |
Copyright terms: Public domain | W3C validator |