MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordpinq Structured version   Visualization version   GIF version

Theorem ordpinq 9803
Description: Ordering of positive fractions in terms of positive integers. (Contributed by NM, 13-Feb-1996.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ordpinq ((𝐴Q𝐵Q) → (𝐴 <Q 𝐵 ↔ ((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴))))

Proof of Theorem ordpinq
StepHypRef Expression
1 brinxp 5215 . . 3 ((𝐴Q𝐵Q) → (𝐴 <pQ 𝐵𝐴( <pQ ∩ (Q × Q))𝐵))
2 df-ltnq 9778 . . . 4 <Q = ( <pQ ∩ (Q × Q))
32breqi 4691 . . 3 (𝐴 <Q 𝐵𝐴( <pQ ∩ (Q × Q))𝐵)
41, 3syl6bbr 278 . 2 ((𝐴Q𝐵Q) → (𝐴 <pQ 𝐵𝐴 <Q 𝐵))
5 relxp 5160 . . . . 5 Rel (N × N)
6 elpqn 9785 . . . . 5 (𝐴Q𝐴 ∈ (N × N))
7 1st2nd 7258 . . . . 5 ((Rel (N × N) ∧ 𝐴 ∈ (N × N)) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
85, 6, 7sylancr 696 . . . 4 (𝐴Q𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
9 elpqn 9785 . . . . 5 (𝐵Q𝐵 ∈ (N × N))
10 1st2nd 7258 . . . . 5 ((Rel (N × N) ∧ 𝐵 ∈ (N × N)) → 𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩)
115, 9, 10sylancr 696 . . . 4 (𝐵Q𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩)
128, 11breqan12d 4701 . . 3 ((𝐴Q𝐵Q) → (𝐴 <pQ 𝐵 ↔ ⟨(1st𝐴), (2nd𝐴)⟩ <pQ ⟨(1st𝐵), (2nd𝐵)⟩))
13 ordpipq 9802 . . 3 (⟨(1st𝐴), (2nd𝐴)⟩ <pQ ⟨(1st𝐵), (2nd𝐵)⟩ ↔ ((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴)))
1412, 13syl6bb 276 . 2 ((𝐴Q𝐵Q) → (𝐴 <pQ 𝐵 ↔ ((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴))))
154, 14bitr3d 270 1 ((𝐴Q𝐵Q) → (𝐴 <Q 𝐵 ↔ ((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  cin 3606  cop 4216   class class class wbr 4685   × cxp 5141  Rel wrel 5148  cfv 5926  (class class class)co 6690  1st c1st 7208  2nd c2nd 7209  Ncnpi 9704   ·N cmi 9706   <N clti 9707   <pQ cltpq 9710  Qcnq 9712   <Q cltq 9718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-omul 7610  df-ni 9732  df-mi 9734  df-lti 9735  df-ltpq 9770  df-nq 9772  df-ltnq 9778
This theorem is referenced by:  ltsonq  9829  lterpq  9830  ltanq  9831  ltmnq  9832  ltexnq  9835  archnq  9840
  Copyright terms: Public domain W3C validator