![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordintdif | Structured version Visualization version GIF version |
Description: If 𝐵 is smaller than 𝐴, then it equals the intersection of the difference. Exercise 11 in [TakeutiZaring] p. 44. (Contributed by Andrew Salmon, 14-Nov-2011.) |
Ref | Expression |
---|---|
ordintdif | ⊢ ((Ord 𝐴 ∧ Ord 𝐵 ∧ (𝐴 ∖ 𝐵) ≠ ∅) → 𝐵 = ∩ (𝐴 ∖ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssdif0 4050 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∖ 𝐵) = ∅) | |
2 | 1 | necon3bbii 2943 | . 2 ⊢ (¬ 𝐴 ⊆ 𝐵 ↔ (𝐴 ∖ 𝐵) ≠ ∅) |
3 | dfdif2 3689 | . . . 4 ⊢ (𝐴 ∖ 𝐵) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵} | |
4 | 3 | inteqi 4587 | . . 3 ⊢ ∩ (𝐴 ∖ 𝐵) = ∩ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵} |
5 | ordtri1 5869 | . . . . . 6 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) | |
6 | 5 | con2bid 343 | . . . . 5 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐵 ∈ 𝐴 ↔ ¬ 𝐴 ⊆ 𝐵)) |
7 | id 22 | . . . . . . . . . . 11 ⊢ (Ord 𝐵 → Ord 𝐵) | |
8 | ordelord 5858 | . . . . . . . . . . 11 ⊢ ((Ord 𝐴 ∧ 𝑥 ∈ 𝐴) → Ord 𝑥) | |
9 | ordtri1 5869 | . . . . . . . . . . 11 ⊢ ((Ord 𝐵 ∧ Ord 𝑥) → (𝐵 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ 𝐵)) | |
10 | 7, 8, 9 | syl2anr 496 | . . . . . . . . . 10 ⊢ (((Ord 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ Ord 𝐵) → (𝐵 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ 𝐵)) |
11 | 10 | an32s 881 | . . . . . . . . 9 ⊢ (((Ord 𝐴 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → (𝐵 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ 𝐵)) |
12 | 11 | rabbidva 3292 | . . . . . . . 8 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → {𝑥 ∈ 𝐴 ∣ 𝐵 ⊆ 𝑥} = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵}) |
13 | 12 | inteqd 4588 | . . . . . . 7 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → ∩ {𝑥 ∈ 𝐴 ∣ 𝐵 ⊆ 𝑥} = ∩ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵}) |
14 | intmin 4605 | . . . . . . 7 ⊢ (𝐵 ∈ 𝐴 → ∩ {𝑥 ∈ 𝐴 ∣ 𝐵 ⊆ 𝑥} = 𝐵) | |
15 | 13, 14 | sylan9req 2779 | . . . . . 6 ⊢ (((Ord 𝐴 ∧ Ord 𝐵) ∧ 𝐵 ∈ 𝐴) → ∩ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵} = 𝐵) |
16 | 15 | ex 449 | . . . . 5 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐵 ∈ 𝐴 → ∩ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵} = 𝐵)) |
17 | 6, 16 | sylbird 250 | . . . 4 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (¬ 𝐴 ⊆ 𝐵 → ∩ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵} = 𝐵)) |
18 | 17 | 3impia 1109 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord 𝐵 ∧ ¬ 𝐴 ⊆ 𝐵) → ∩ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵} = 𝐵) |
19 | 4, 18 | syl5req 2771 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵 ∧ ¬ 𝐴 ⊆ 𝐵) → 𝐵 = ∩ (𝐴 ∖ 𝐵)) |
20 | 2, 19 | syl3an3br 1480 | 1 ⊢ ((Ord 𝐴 ∧ Ord 𝐵 ∧ (𝐴 ∖ 𝐵) ≠ ∅) → 𝐵 = ∩ (𝐴 ∖ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1072 = wceq 1596 ∈ wcel 2103 ≠ wne 2896 {crab 3018 ∖ cdif 3677 ⊆ wss 3680 ∅c0 4023 ∩ cint 4583 Ord word 5835 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 ax-nul 4897 ax-pr 5011 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-ral 3019 df-rex 3020 df-rab 3023 df-v 3306 df-sbc 3542 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-pss 3696 df-nul 4024 df-if 4195 df-sn 4286 df-pr 4288 df-op 4292 df-uni 4545 df-int 4584 df-br 4761 df-opab 4821 df-tr 4861 df-eprel 5133 df-po 5139 df-so 5140 df-fr 5177 df-we 5179 df-ord 5839 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |